
1

Quantum Algorithms
Daniel S. Abrams

Abstract-This thesis describes several new quantum al-
gorithms. These include a polynomial time algorithm that
uses a quantum fast Fourier transform to find eigenvalues
and eigenvectors of a Hamiltonian operator, and that can
be applied in cases (commonly found in ab initio physics
and chemistry problems) for which all known classical algo-
rithms require exponential time. Fast algorithms for simu-
lating many body Fermi systems are also provided in both
first and second quantized descriptions. An efficient quan-
tum algorithm for anti-symmetrization is given as well as a
detailed discussion of a simulation of the Hubbard model.

In addition, quantum algorithms that calculate numeri-
cal integrals and various characteristics of stochastic pro-
cesses are described. Two techniques are given, both of
which obtain an exponential speed increase in compari-
son to the fastest known classical deterministic algorithms
and a quadratic speed increase in comparison to classical
Monte Carlo (probabilistic) methods. I derive a simpler and
slightly faster version of Grover’s mean algorithm, show how
to apply quantum counting to the problem, develop some
variations of these algorithms, and show how both (appar-
ently distinct) approaches can be understood from the same
unified framework.

11143.3 Fermions in the first quantized for-
malism

111-B.4 Reading the final state
111-CFinding eigenvalues and eigenvectors

111-C.l Statement of the problem
111-C.2 Eigenvalues and eigenvectors via

quantum FFT
111-C.3 Applying the algorithm

111-DConclusion

IV Integrals and Stochastic Processes
IV-AIntroduction
IV-B Statement of the problem and classical algo-

rithms .
IV-C Review of Grover searching
IV-DIntegrals via amplitude amplification
IV-E Integrals via quantum counting
IV-F Discussion

16
18
19
19

19
20
22

22
22

23
24
24
25
26

Finally, the relationship between physics and computa- IV-GConclusion 26
tion is exdored in some more deDth. and it is shown that
computational complexity theory depends very sensitively V Nonlinear Quatum Mechanics and Np-
on physical laws. In particular, it is shown that nonlin-
ear quantum mechanics allows for the polynomial time so- 27
lution of NP-comdete and *P oracle Droblems. Using the V-A Introduction 27

. ,

Weinberg model as a simple example, the explicit construc- V-B First method 28
tion of the necessary gates is derived from the underlying
physics. Nonlinear quantum algorithms are also presented V-C An explicit construction using the Weinberg

superluminal communication. V-D Second method 30
V-E Conclusion 31

-
using Polchinski type nonlinearities which do not allow for model . 29

CONTENTS
ACKNOWLEDGMENTS

I

I1

Introduction
I-A Motivation
I-B An introduction to the theory of computing

machines
I-C Classical gate arrays
I-D Physics of classical computation

Quantum Computers
11-A Quantum bits
11-B Quantum gate arrays
11-C Universality
11-D Introduction to quantum algorithms
11-E Simon and Shor algorithms
11-F Accuracy and errors
11-G Potential implementations

2
2

3
6
6

8
8
9
9

10
11
12
13

I thank first and foremost my thesis advisor, Professor
Seth Lloyd, who has been both a source of inspiration and
a source of ideas, who taught me many important and little
known concepts (related to quantum computing), who sent
me to conferences across the country and around the globe
and who introduced me to the leading members of the com-
munity, who was an understanding and astute co-author,
who provided a constant stream of advice and insight, and
(perhaps most of all) who was an all-around great guy.

I also thank my cesupervisor, Professor John D.
Joannopoulos, who not only taught me about condensed
matter physics, the theory of PBGs, and the art of sci-
entific computing, but who taught me how to be a pro-
fessional scientist. I thank him also for allowing me the
freedom to pursue my intellectual curiosity where it led

I11 Quantum Quantum Simulators l4 (quantum computing), for providing me with support and
III-AIntroduction 14 office space and a place to call home within the department
111-BThe fermion problem and the Hubbard model 15 (and a place to call home on Thanksgiving), and for many

111-B.l Description of the system 15 good laughs and much good advice.
111-B.2 Fermions in the second quantized I thank Professor Robert B. Laughlin (my undergraduate

formalism 16 thesis advisor) for teaching me how to think about physics,

for sharing countless hours with me, for continuing to keep
an eye on me and an eye out for me (all the way from the
other coast), and for the dispensing of wisdom; in short,
for being a mentor and a friend.

I thank Professor Douglas D. Osheroff for inspiration
when I was an impressionable Stanford freshman and
throughout my undergraduate years; without his influence,
I might not have devoted myself to the study of physics.

Many members of the general quantum computing com-
munity have collectively taught me a great deal, through
various conversations, some shorter and some longer.
These include Leonard Adleman, Wim Van Dam, Jon
Dowling, Chris F’uchs, Daniel Gottesman, Richard Jozsa,
Andrew Landahl, Norm Margolus, John Preskill, Peter
Shor, Mike Sipser. I am sure there are others that I have
forgotten, but I am no less appreciative.

I thank all the professors and teachers I’ve had over the
years for providing me with the necessary knowledge and
for the inspiration to study. These include D. Spooner, W.
Dodge, G. Munley, R. Rhodes, R. Whipple, and W. Bauer.
I’m particularly grateful to Professor Paul Cohen.

I thank Colin Williams, with whom I collaborated on
the work discussed in Chapter 4, and who provided on
multiple occasions the opportunity to visit NASA-JPL and
the California Institute of Technology.

I thank Wati Taylor, who, one day after a colloquium in
building 12, introduced me to the field of quantum compu-
tation. I also thank Professor Charlie Marcus for advice in
my career and otherwise.

I thank my (non-physicist) friends for putting up with
me, entertaining me, supporting me, distracting me, etc.
I am especially grateful to count among them Barry, Bob,
Daniel, and Kelly, Jordan and Laura, Mike and Adelle and
Mike, Gary and Maria, Lisa, Viviana, Brian, Judd, Alex
and B., Roberto, and Charlie. I also thank those friends of
mine who may not be here in Boston but who have been
there for me nonetheless.

I thank all the members of the group for their friend-
ship and advice, but particularly Nikolaj, Attila, Pierre,
Shanhui, Kyeongjae, Rodrigo, Ickjin, Steven, and Tairan.

I thank also my friends on the CMT corridor, especially
Dicle, Alkan, Sohrab, Claudio, Steve Simon, and Professor
Tomas Arias.

I thank our department secretary Margaret O’Meara,
and Peggy and Pat in the physics office, all of whom were
always helpful and friendly.

I thank Ray Hagstrom for sharing with me the magic of
physics when I was young.

I’d like to acknowledge several individuals with whom I
have had helpful conversations directly related to the work
contained in this thesis. These include I. Singer, C. F’roese
Fisher, W. R. Johnson, J. Jacobson, S. Simon, T. Arias, S.
Johnson, I. Park, and T. Wang.

Almost last, but certainly not least, I thank my family,
and especially my parents, for so much that there would
be no place to begin and no space to finish.

Finally: This thesis would not have been possible with-
out funding from several sources. These include an ND-

SEG graduate fellowship; grant # N00014-95-1-0975 from - .
the Office of Naval Research; the ARO and DARPA under
grant # DAAH04-96-1-0386 to QUIC, the Quantum In-
formation and Computation initiative; a DARPA grant to
NMRQC, the Nuclear Magnetic Resonance Quantum Com-
puting initiative; the NASA/JPL Center for Integrated
Space Microsystems; and, the JPL Information and Com-
puting Technologies Research Section.

I. INTRODUCTION
A . Motivation

It is often difficult to see the hidden assumptions on
which the foundations of science are built. The 20th cen-
tury has witnessed at least two revolutions in physics, and
in both of these revolutions not only were new laws discov-
ered, but prior assumptions were found to be false. Ideas
that were previously unquestioned were revealed to be mere
approximations.

The field of computer science has for the greater part of
this century been based upon the ideas of classical physics.
In fact, the theory of quantum computing has flourished
only in the last few years. In retrospect, this may seem to
be hopelessly naive - and, perhaps, to the physicist who
has grown accustomed to dealing mostly with quantum me-
chanics and only occasionally with classical mechanics -
this may appear to be somewhat surprising. The world is
properly described by quantum mechanics; since computers
are physical devices that exist in the world, surely they too
must be properly described by quantum mechanics. The
logic is obvious and compelling.

However, it is not so clear how a quantum mechanical
computer would operate, or even how computation is sup-
ported by quantum mechanics’. Moreover, it is not at all
obvious, a priori, that a quantum mechanical computer
should have any advantage over a classical computer. It
is perhaps for some of these reasons that the theory of
quantum computing took a long time to develop. Another
explanation may be that theoretical computer science is an
abstract discipline, dealing with Turing machines and au-
tomata, proofs and lemmas, and mathematical models that
are far removed from the actual physical reality of comput-
ing machines. Stated differently, one might say that the
theory of computer science is a subject that has been tra-
ditionally much closer to mathematics than physics, and
the assumption that information is classical was hidden in
the abstractions.

Whatever the reason may be, one fact is now clear:
the introduction of quantum physics to computer science
changes fundamentally the foundations of the subject.
Computers are not classical devices.

Often, in conferences and review articles and other such
places, the subject of quantum. computing is motivated by

*Indeed, were it not for the fact that the existance of computers
in the real world implies that it must be possible to compute with
quantum mechanics on some level, it would not even be obvious, a
priori, if quantum mechanics should allow for the possibility of com-
puting. Proof by existance is vastly different from an understanding
of computation on a detailed, microscopic level.

the argument that transistors are becoming smaller and
smaller, that pretty soon quantum effects will start to cause
limitations on our ability to design faster chips, and that
one should therefore study the quantum mechanics of com-
puting. While this type of argument may have been a his-
torical motivation, it is today so far from the point that it
practically misleads. While it is surely important to investi-
gate the quantum mechanics of small classical components,
the subject of quantum computing is not merely an investi-
gation into the possibility of smaller and faster computers.
It is a new formalism for the theory of computer science.
And just as in the case of mechanics, the classical theory is
left as an approximation to be used in those special cases
where it may be appropriate.

My own interest in quantum computing, like that of
many others, came as a result of Peter Shor’s now famous
1994 discovery of a quantum polynomial-time factoring al-
gorithm[86]. This result publicized the idea that a quantum
computer might be fundamentally more powerful than a
classical computer. It indicated that a quantum computer
would be useful -that it might possess capabilities that no
classical computer could.2 It also left open two important
questions:

1. How might one build a quantum computer?
2. What can one do with a quantum computer other

than factor large integers?
This thesis attacks the second of these questions. In

particular, it asks: What can a physicist do with a quan-
tum computer? It also explores the relationship between
physics and computation in some more depth, and in par-
ticular, looks at how computational complexity theory de-
pends very sensitively on physical laws.

The remainder of the thesis is organized as follows: The
first two chapters constitute a review of computation and
the physics of computation. Theoretical computer science
and classical computation will be discussed in this first
chapter, and quantum computing will be discussed in the
second. While these two chapters provide the necessary
background for the remainder of the thesis, the reader who
is familiar with these topics may freely pass them over. In
the final three chapters, I present new results. Chapter 3
discusses the use of quantum computers for physics sim-
ulations and ab initio calculations. I describe polynomial
time quantum algorithms for finding eigenvalues and eigen-
vectors of a Hamiltonian operator, for simulating many
body Fermi systems in general and the Hubbard model in
particular, and for antisymmetrizing the state of the com-
puter. Chapter 4 describes how one can obtain a quantum
speed-up when calculating integrals. I derive a simpler and
slightly faster version of Grover’s mean algorithm, show

*For the reader who is unfamiliar with public key cryptosystems,
it is important to be aware that the security of M A [84], one of
the world’s most common methods for encrypting communications,
depends upon the difficulty of factoring large numbers. A real life
quantum computer, therefore, would render most secret codes obso-
lete. (Moreover, there is some indication that quantum computers
would render all public key systems obsolete). This application has
been one reason that quantum computing has attracted widespread
attention.

how to apply quantum counting to the problem, develop
some variations of these algorithms, and show how both
(apparently distinct) approaches can be understood from
the same unified framework. Finally, in Chapter 5, I’ll show
how the power of quantum computers depends very sensi-
tively on the underlying physical model - and in particular,
that if the physics of the universe were only slightly differ-
ent than we think it is (and it might be!), then quantum
computers would be unbelievably powerful.

B. An introduction to the theory of computing machines

It is necessary to understand the classical theory of com-
puting machines before one can examine the quantum the-
ory. Moreover, if one is to argue that quantum computers
are truly more powerful than classical computers, then it
will be necessary to be somewhat precise about the clas-
sical theory. This section is thus intended as a physicist’s
introduction to computer science (or at least, those aspects
of computer science which are relevant to the work in this
thesis). Since physicists have widely disparate levels of
familiarity with computer science, it is written to be self-
contained, with little or no prior knowledge a s~umed .~

The first significant work in theoretical computer science
took place in the early part of this century. Godel, Tur-
ing, Church, Post, Kleene and others were interested in the
study of what was computable, in principle. Now it would
seem that in order to address this question, one would have
to specify the precise capabilities of the computer involved.
However, it turns out that if you consider machines with
a certain minimum computing capability, then all models
of computation are equally powerful (in the sense of com-
putability). This idea was formalized in 1936 by Church
and Turing and is known as the Church-Turing thesis:

Church- Turing thesis: Any computing device can be sim-
ulated by a Turing machine.

This is an important idea, because it means that we need
not study every possible type of computing machine - we
need only study the model invented by Alan Turing. If
something is computable (in principle), it is computable
on a Turing machine. Note that the Church-Turing thesis
is a thesis and not a theorem. In order to prove this con-
jecture, one would have had to define precisely a model for
computing devices. But the whole point of the thesis is that
it applies to any computing device, and so we don’t want
to limit ourselves by specifying exactly what a comput-
ing machine must be. Nevertheless, the hypothesis is fairly
self-obvious and in 63 years, no one has ever conceived of a
counter-example. Moreover, there are many models of com-
putation which have been proven to be Turing-equivalent,
including those of Church, Post, Von Neumann, and others.
So it pays to examine a Turing machine more closely.

3The material in this section and the remainder of this chapter,
unless explicitly referenced, is part of the common knowledge. The
interested reader may find good sources of further information in
the following: Sipser [89], Feynman[48], Preskill[83], Shor [87], Be-
nioff[l5], Ekert and Jozsa[44], and Garey and Johnson[52].

4

A Turing machine consists of a head, which can be in one
of a finite set of states Q, and a tape, which extends in-
finitely in both directions, and on which the head can read
or write a set of symbols or characters from an alphabet
A.4 The head is always pointing to one particular charac-
ter on the tape, and can move left or right one step at a
time, to the previous or next symbol on the tape. Finally,
there is a rule which tells the computer what to do at each
step, based upon the state of the head and the symbol to
which it is currently pointing. This rule is a function g of
the form

g : Q x A * Q x A x { L , R } (1)

That is, it maps a state of the head and symbol on the
tape into a new state of the head, a new symbol on the
tape, and an instruction to move to the left or to the right.
This function therefore determines the behavior of the com-
puter. Of course, the computer must begin with the head
in an initial state and with an initial finite input string
of symbols on the tape. By choosing various sets Q and
A, various functions g, and the initial conditions, one can
make a Turing machine compute whatever one desires (as
long as it is computable in principle).

There are two important results pertaining to Turing
machines that we shall consider. The first is that there
exists what is known as a universal Turing machine. A
universal Turing machine is one which has the capability
of simulating the behavior of any other Turing machine
(and therefore any other computing machine in general),
simply by modifying the initial input configuration of the
tape. That is, the function g (and hence the set of states
Q and alphabet A) is to remain k e d . Moreover, what is
perhaps more remarkable than the existence of a universal
Turing machine is that it need not be very complicated:
roughly 10 or 20 states and 10 or 20 symbols will ~uffice.~

The second result of interest is that there are certain
problems which cannot be solved on a Turing machine, and
are therefore uncomputable. The most famous example is
called the halting problem[93]. Normally, there is a special
state of the head Q f which is the final, or halting state.
Once the head reaches this state, the computer stops. The
question is this: given a description of a Turing machine
and the initial input on the tape, can you determine if
the machine will ever halt? It turns out in general that
you cannot. (More precisely, you cannot build a computer
which can solve the halting problem). The proof is simple
and runs as follows: Imagine a Turing machine H that
solves the halting problem such that when given as input
a description D of another Turing machine (and its input),
H will halt if D does not halt, and H will go into an infinite
loop if D does halt. Now what happens if you provide
H as input to H? The machine can neither halt nor not

4Actually, what I’ve described here is only one example of a Turing
machine. There are many variations of Turing machines (for example,
there can be multiple tapes), but they’re all equivalent, so it doesn’t
matter which one you choose.

5The exact number depends on how the machine is designed. Ac-
tually, two states will suffice if there are many symbols, and vice
versa.

halt: hence, one must conclude that it is not possible to
design H in the first place. The halting problem is therefore
undecidable.

One sees therefore that the Turing machine is a very
useful concept: by analyzing Turing machines, one can (at-
tempt to) determine what is in principle computable and
what can never be computed. However, in real life, one is
generally interested in more than whether or not something
can be computed in theory: one wishes to know how long
it will take, how much it will cost, etc. It may be possi-
ble, in theory, to perform an ab initio simulation of each
and every particle in my brain - but it is hard to imagine
that it will ever be possible in practice. Hence, as real life
computers became more and more prevalent, the theory of
computer science became more concerned with how long a
computation would take. One thus arrives at a modified
form of the Church-Turing thesis:

Church-Turing thesis (Strong Form): Any reasonable
computing device can be simulated by a Turing machine
in a number of steps which grows as a polynomial function
of the resources used by the device.

Like the Church-Turing thesis in its weaker form, the
strong form cannot be proven. (Although it has been
proven for just about any specific classical model of compu-
tation that one can imagine). The statement is deliberately
vague, with words such as “reasonable” and “resources”
that are open to interpretation. Still, it is clear when a
computer is and when a computer is not reasonable. Un-
reasonable machines would include those that perform an
infinite number of steps in a finite time (for example, the
Zeno’s paradox inspired device that performs each succes-
sive operation in half the time of the previous operation),
or machines that require infinite precision (for example, by
storing an arbitrarily precise real number in the frequency
of a single photon). Similarly, it is clear in practice what
one should count as a resource. Certainly time and memory
space are resources; precision or power may also be. The
important point to remember, especially when one exam-
ines non-traditional computing devices (such as quantum
computers), is that one must be careful to consider all the
resources involved.

Essentially, the strong form of the Church-Turing thesis
says that all computing devices are polynomially equiva-
lent. This is important because it naturally divides prob-
lems into two classes: those that can be solved in polyno-
mial time, and those that cannot. (A precise definition of
polynomial time will be furnished below). If you provide an
algorithm that runs in polynomial time on any one particu-
lar computer, then this algorithm can be run in polynomial
time on every computer. Likewise, a problem that requires
an exponential number of steps on any particular computer
will require exponential steps on every computer.6

61t’s worth noting that one experiences these theoretical distinctions
in real life. For example, by describing an algorithm as O(n2), I have
already ignored the constant speed difference (between, for example,
my Pentium 9OMhz and my Pentium 400Mhz). Moreover, it may be
that on the Cray C90, which can process a whole vector of numbers
at a single time, this algorithm may not only run faster, it may scale
more like O(n), as opposed to O(n2) (at least for n within a certain

.. 5

a m
This division between polynomial and exponential prob-

lems is also convenient because it corresponds intuitively
with our notion of efficient and inefficient algorithms. An
algorithm that requires O(n) operations is certainly faster
than one that requires O(n3), but both scale quite mod-
estly compared to an algorithm requiring O(2n) operations.
In the later case, one does not need very large n before the
problem becomes impossible in reality, even if it is com-
putable in t h e ~ r y . ~ Polynomial-time algorithms are there-
fore considered tractable; exponential algorithms are con-
sidered intractable.

For both of these reasons, one is frequently concerned
with distinguishing polynomial-time algorithms from those
that require exponential time8. Hence, one must have a
precise way of classifying algorithms. We say that a prob-
lem can be solved with O (f (n)) operations if, in the limit
of large n, the required number of steps is bounded by
c * f(n), where c is a fixed constant, and n is the length
of the input string. Since it is not very useful to describe
an O(n) algorithm a s 0(2n), we normally try to find the
smallest f (n) which the required number of steps will ap-
proach asymptotically. Note, however, that as this defini-
tion depends upon the length of the input, the computa-
tional complexity appears to depend upon the manner in
which the input string is written. We must therefore add
an additional constraint, that the input must be reasonably
compact. For example, one can easily factor a number N
in roughly O(&) operations - but because one would
normally write down N with only n = log N digits, this al-
gorithm is actually exponential in the size of the input. One
could specify the input to the problem so that it required
a string of length N instead of length n (for example, by
indicating the value with a string of N zeroes followed by
a single one), in which case a linear time algorithm would
be straightforward. However, this would not be considered
reasonable.

The set of all problems whose complexity is asymptot-
ically bounded by a polynomial function is called P. Cu-
riously, while there are many problems known to be in P,
there are hardly any decidable problems which are known
not to be in P. This is because it is very difficult to prove
that a problem cannot be solved in polynomial time. Thus
one is forced to make such statements as “there is no known
classical algorithm for factoring in polynomial time”. This
is also why it is difficult to prove that a quantum computer
is more powerful than a classical computer. Although we

range - and all real computers with finite memory always have a
limited range). But no reasonable computer will require exponential
time for this problem.

7John Preskill calculates that factoring a 400 digit number would
take 1O1O years (roughly the age of the universe) using the best known
classical algorithm on state of the art computers, which can factor a
130 digit number in about one month (using hundreds of worksta-
tions). On the other hand, if we had a quantum computer that could
factor a 130 digit number in one month, it could factor the 400 digit
number in a few years - about 1O1O times faster!

8 0 f course, a problem can be worse than polynomial but better
than exponential, e.g., nlogn. However, it seems that most problems
are not in this intermediate range - and those that are, are usually
(perhaps too casually) referred to as “exponential” even when they
are not.

know a polynomial time quantum algorithm for factoring,
and even though the problem is thought not to be in P,
there may in fact be a polynomial time classical algorithm
that no one as yet has been clever enough to discover.

A broader class of problems, which contains many well-
known problems that are thought to be exponential, is
called NP. The phrase NP stands for “non-deterministic
polynomial” and means (strangely enough) that such
problems can be solved in polynomial time on a non-
deterministic Turing machine. Not surprisingly, a non-
deterministic Turing machine is not a “reas~nable~~ model
of computation, as discussed above: it is a mathematical
model, with convenient properties. Essentially, it is an or-
dinary Turing machine which, at each step, can branch into
multiple states at the same time. Pretty soon, there are an
exponential number of Turing machines following an expo-
nential (and rapidly growing) number of paths. It is said
to solve the problem if only one single path finds a solu-
tion. Clearly, one would expect that an ordinary Turing
machine (or any “reasonable” computer) would required
an exponential number of operations to perform the same
computation.

One can show that there is an equivalent (but less pre-
cise) definition of the class N P which is the following: The
class NP is the set of problems for which it is possible to
verify a potential solution in polynomial time. For exam-
ple, the factoring problem is believed to be exponential -
but once provided with potential factors, it is quite easy
to multiply them and verify if they truly are factors, in
polynomial time. Factoring is therefore in the class NP. In
fact, almost all hard (i.e., exponential) problems that occur
in practice are in the class NP. (One important exception
is the class #P, to be discussed beow). Amazingly, there
are no problems that are known to be in NP and not in
P. We therefore arrive at the great outstanding question of
theoretical computer science:

Does P=NP?
Of course, almost everyone believes that P # N P , but

no one knows for sure.
In 1971, Stephen Cook showed that a certain problem,

the satisfiability problem, or SAT problem, is as hard a s
any problem in NP[32].9 More precisely, he showed that
there is a polynomial time reduction from any problem in
N P to SAT. Hence, if one could find a polynomial time
algorithm for SAT, one could solve any problem in NP in
polynomial time. Moreover, if there exists just one prob-
lem in NP that requires exponential time, then SAT must
as well. For this reason the SAT problem is called NP-
complete. Later, in 1972, Karp showed [60] that many
other well known problems, such as the traveling sales-
man problemlo, are also NP-complete. A huge amount

QThere are various versions of the SAT problem, but the basic idea
is the following: consider a boolean expression made up of n variables;
for example: (bl or b z) and not (bl and b3 or not b4) . The question
is, are there a set of values for b l . . .b, such that the expression
evaluates to true (i.e., is “satisfied”). It turns out that, in the worst
case, there is no known algorithm that improves upon merely trying
all of the (exponentially many) possibilities.

‘OThe traveling salesman problem is the following: consider a sales-

6
._

of work has been done on the theory of NP-completeness
since Cook and Karp, and now hundreds of problems are
known to be NP-complete[52]. A polynomial time solution
to any one of them would imply that P=NP (and a great
deal of fame). Conversely, once a problem is shown to be
NP-complete, it is clear that a polynomial time solution is
unlikely to be found. Interestingly, it turns out that prac-
tically every naturally occurring problem in NP (and most
naturally occurring problems are in NP) is either in P or
is NP-complete. The class NPI (for NP intermediate) ap-
pears to be quite lonely. In fact, this author is aware of
only three problems that are thought to be in NPI: integer
factoring, graph isomorphism, and certain versions of the
short vector problem. This is unfortunate because prob-
lems in NPI are good candidates for quantum algorithms:
they are not as hard as NP-complete problems, but they
still (are thought to) require exponential time on a classical
computer.

Finally, there is one last class of problems which will be
discussed here, known as #P. Problems in the class #P
include those that ask for the exact number of solutions to
an N P complete problem: for example, how many (of the
n!) paths that visit each of n cities have length less than I?
It is self-evident that the class #P contains the class NP,
and intuitively, it appears to be much larger. (But this is of
course an open question). The class #P will be addressed
later in the context of nonlinear quantum algorithms.

C. Classical gate arrays

Although the theory of computational complexity is ma-
chine independent, it is often useful to have a particular
computational model in mind. This is especially true when
considering the physics of computation. For these pur-
poses, the classical gate array (and later, quantum gate
array) is convenient.

Every computational problem can be viewed as a func-
tion that maps an input string (which we shall represent
in binary) to an output string (which may also be repre-
sented in binary). In fact, one can consider each bit of the
output string separately, so that a computer program can
be viewed quite generally as a function f which maps n
bits into a single bit:

f : B n = = + B (2)

where B is the set of possible boolean values (0 , l) . A logic
gate is just a simple computation; for example, the NOT
gate is the function on a single bit such that

NOT(a) = { } 0; a = l
1; a = O

Two bit gates are just slightly more interesting; for ex-

man who must visit a set of cities, and would like to do so in the most
efficient manner. Given a list of cities (and their locations), find the
shortest path which visits each of the cities. This is often cast in
an alternative manner, as a decision problem, by asking if there is a
path of length d or less (that visits all the cities).

ample

0; (a = 0) OT (b = 0)
= { 1; (a = 1) and (b = 1)

Once we have a set of logic gates, we can begin to build
more complicated computations by designing a gate away.
In a gate array, we apply a sequence of logic gates, one after
another, to the original input bits or to the outputs of the
proceeding gates. For any given algorithm, the design of
the gate array is fixed; we vary the input bits, the gates are
applied in series, and the result is obtained. Of course, if
all of our gates return only a single bit, we will not be able
to build a very interesting (or very long) computation. So
we will need some gates that return more than one value;
for example, COPY (or FANOUT):

COPY(a) = a €3 a (5)

An important and natural question that arises is the fol-
lowing: is there a universal set of gates? In other words, is
there a set of gates from which one can build any computa-
tion, as long as the gates are applied correctly? In fact, the
set of gates described above is a universal set: with AND,
NOT, and COPY, one can compute any function that is
computable.’l

Since the gate array has been shown to satisfy the weak
form of the Church-Turing thesis, one may ask if it satisfies
the strong form. In this case, the relevant computational
resource is the number of gates. How does the number of
gates scale with the length of the input? One needs to
be careful here, because any particular gate array is of a
fixed size: if the length of the input is increased, then a
larger gate array will be required. But it may be that the
designer of the gate array can perform some of the work
required to solve the problem. Hence we require that the
gate array is sufficiently regular - that is, that the gate array
can be designed with a polynomial-time algorithm. With
this restriction, it is possible to prove that gate arrays and
Turing machines can simulate each other with only poly-
nomial overhead. A polynomial time algorithm requires
a polynomial size gate array, and vice versa. Thus, one
can prove that gate arrays satisfy the strong form of the
Church-Turing thesis.

D. Physics of classical Computation

As has been emphasized throughout this thesis, comput-
ers are physical devices and must obey the laws of physics.
One is thus naturally driven to consider if there may be
physical limitations to the power of computing machines.

l l I t is easy t o see why these gates are universal. First, recall that
a computation is just a function of the form f : Bn -r B. The set
of possible input strings is therefore divided into two classes: those
that return true, and those that return false. Thus, the computation
returns false except for on a certain (enumerable) set of possible in-
puts. With A N D gates and NOT gates it is easy to determine if the
input is any particular string. With OR gates, we can then determine
if the input is a member of the set which should return true. While
this technique is by no means efficient, it shows that the gates are
universal.

7

This consideration appears to become more and more sub-
stantive as computers become smaller and faster. How long
can Moore’s law12 continue? Will quantum mechanics in-
terfere with our ability to compute?

If one looks again at the gates described in the previous
section, an interesting and important observation can be
made: the usual fundamental logic gates are irreversible.
Given the output of an AND gate, for instance, it is impos-
sible to determine what inputs were provided. Of course,
the gate as described previously takes as input two bits and
generates as output only a single bit, so it obviously cannot
be reversible. But even if the gate is modified to output
two bits - that is, the output of the AND function and an
additional output bit for the purposes of reversibility - it
still cannot be made reversible. In the case of AND, there
are three inputs - (0,O) , (O,l), and (1,O) - which all gener-
ate the same output (0) for the AND operation. A single
additional output bit is therefore insufficient to make this
gate reversible. Indeed, one will find that this is the case
for all of the standard logical operations.

The irreversible nature of standard logic gates leads one
to an important thermodynamic consideration. Since the
action of each logic gate must contract phase space (or, al-
ternatively, decrease the system’s entropy), there must be
a corresponding entropy increase taking place outside the
computer. This therefore leads one to the (incorrect) con-
clusion that each fundamental computer operation requires
one to do work.

In 1961, Rolf Landauer clarified and corrected the previ-
ous statement[62]. What requires energy is not logical op-
erations, but erasing information. One must do work equal
to kBTln2 for each bit of information that is discarded.
This is known as Landauer’s principle. In the previous
example, a single bit is lost during the AND operation,
and so the result is the same (kBTln2 heat generated).
However, I’ll show in a moment that it is possible to per-
form reversible logic, in which case there is no fundamental
energy limitation per gate. But it is worth noting that or-
dinary computers do not employ reversible logic, and that
the limit of kBTln2 per operation could eventually pose
problems. While even the tiniest and most efficient com-
puters today are still many orders of magnitude from this
limit, it should be obvious that if the size of transistors
continues to shrink at an exponential rate, it will not take
long before thermodynamic considerations will dominate.
Eventually, computers will need to be made with reversible
logic if they are to be made faster.13 .

The next critical step came in 1973 when Charlie Ben-
nett showed that all computations can be carried out with
reversible logic gates[l6][17][18][19]. The number of steps
taken by the reversible computer was a polynomial func-
tion of the number of irreversible operations required, and,
depending upon the model of computation used (i.e., one-
tape Turing machine, multi-tape Turing machine, gate ar-

12Named after Gordon Moore of Intel, it states that computers

131f the current pace of progress continues, the fundamental limit
become twice as fast roughly every 18 months.

of irreversible computation will be reached in roughly 6W30 years.

ray, etc.), the overhead could be only a constant factor. Be-
cause reversible classical computation is closely related to
quantum computation, we’ll examine reversible logic gates
in more detail.

First, note that the NOT gate is reversible, and that
in general, a reversible gate must have as many outputs
as it has inputs. While AND and O R cannot be made
into reversible 2-bit gates, the X O R gate can be cast in a
reversible form:

Feynman calls this X O R gate a “controlled-NOT”, be-
cause it flips the second bit if and only if the first bit
is 1. The controlled-NOT is a convenient gate, and one
employed frequently in quantum computations. Unfortu-
nately, it is not universal, i.e., the controlled-NOT is in-
sufficient for building an arbitrary classical computation.
In fact, one can prove that no set of (classical) two bit re-
versible gates is universal. Fortunately, one needs only a
single 3-bit gate in order to perform universal reversible
logic. Two famous examples of 3-bit gates that suffice are
the F’redkin and Toffoli gates [51]. The F’redkin gate has an
additional curious property in that the number of ones and
zeros does not change between the input and the output.
This was useful for F’redkin, who was interested in showing
how one could build a universal computer with a classical
“billiard ball” model.

The F’redkin gate can be thought of as a controlled ex-
change: if the first bit is 1, then exchange the positions
of the second and third bits. Otherwise, do nothing. The
truth table appears as follows:

If one is given a supply of fresh ones and zeroes, the
Fredkin gate can be made to simulate any of the usual
irreversible two bit gates. With this in mind, it is rela-
tively easy to see how one can replace ordinary irreversible
logic gates with reversible gates such as the Fredkin gate.
In each step of the computation, extra “garbage” bits are
introduced. These bits are not required for future steps,
but only so that one can retrace the backward path, to
satisfy the constraint of reversibility. However, it appears
that the number of garbage bits will grow quite quickly
(possibly, one for each step of the computation), and this

8

led some early critics to suggest that reversible comput-
ers were in some sense hiding entropy in the garbage bits.
Fortunately, there is a useful trick (due to Bennett) which
prevents garbage build-up[l9]. For any computable func-
tion f acting on a bit string 2, one can always perform
the following transformation reversibly:

The transformation is obviously reversible on a macro-
scopic scale: since the bit string 2 is part of the output, one
can easily reconstruct the input. The problem is, can one
transform an ordinary irreversible algorithm for calculating
f (3) into a reversible one such that it does not generate
any extra garbage bits (as in the equation above). Ben-
nett’s trick is the following: follow the course of the orig-
inal irreversible algorithm, generating garbage bits along
the way, to maintain reversibility. Once the answer has
been obtained, make a copy of the answer. (This is easily
accomplished with a sequence of controlled-NOT gates).
Then reverse all the steps which were used in the original
calculation, thereby cleaning up the garbage. One is thus
left with simply the original input 3 and the copy of the
answer f(?), as desired. This simple trick is quite useful,
and we shall employ it frequently (and variations thereof)
in the design of quantum algorithms.

Because of the work of Bennett, Fredkin, and others, we
have a detailed understanding of how to perform arbitrary
computation using the fundamental principles of classical
mechanics. It was therefore natural to investigate how com-
putation is possible with quantum systems. Paul Benioff,
in a series of important papers, first showed how to design
quantum mechanical models of computation[ll][12][13][14].
Feynman [47][46] also did important work in this area, as
did Margolus (72][73][74]. They described how one could
build Turing machines, gate arrays, and cellular automata,
and showed that, with the proper Hamiltonian, the sys-
tems could be made to time-evolve in such a way that a
computation was performed. Feynman [46] was the first to
speculate that a quantum computer might in principle be
more powerful than a classical computer: in particular, he
thought that perhaps a quantum computer could be used
to efficiently simulate other quantum systems (a conjecture
later proven by Lloyd [68]). Thus one arrives naturally at
the topic of quantum computing, which will be discussed
in the following chapter.

11. QUANTUM COMPUTERS

A. Quantum bits
l4 The fundamental unit of quantum information is the

quantum bit, or q~bit[85]’~. Mathematically, a qubit is

‘*As with the previous chapter, the material covered herein, un-
less explicitly referenced, is part of the common knowledge. The
interested reader may find good sources of further information in the
following: Sipser[89], Feynman[48], Preskill[83], Shor[87], Benioff[l5],
Ekert and Jozsa[44], and Gaxey and Johnson[52].

15Like the word “bit”, the word “qubit” is used to refer both t o an
amount of information and to the physical system that registers that
information.

simply a ray in a two-dimensional Hilbert space: it r e p . ,
resents the quantum state of a two state system, just as a
classical bit represents the classical state of a two state sys-
tem. Physically, a qubit may be stored in many different
ways: for example, with a photon polarization, two states
of an atom, or the spin of a particle. Whatever the ac-
tual physical system may be, we shall always write the two
states as 10) and Il), thus indicating the correspondence
between classical and quantum bits.

The general state of a single qubit is I$) = o 10) + P 11);
since (aI2 + IPI2 = 1, and the absolute phase is not physi-
cally observable, the general state is described by two real
numbers. A classical bit, on the other hand, is described
by (simply) a classical bit. Even an analog or “fuzzy7’ bit
requires only a single real number for its description. Still,
it is not apparent how much of the information in the qubit
is truly “available” , and even with a single quantum bit one
can see that the question of how one “gets the information
out7’ is not trivial. Given many copies of the state I $) ,
one can make a series of measurements to determine (or
approximate) o and p. However, with a single preparation,
information will be lost during the measurement process.
One might be tempted to think that by being sufficiently
clever one could take a single preparation of I+) and make
multiple copies, but this is not possible. There is a theo-
rem due to Wooters and Zurek [loo] which says that one
cannot copy a quantum state (the “no-cloning” theorem).

The situation becomes more interesting when one has
multiple qubits. While a single two-state system is de-
scribed by a wavefunction of the form l$) = o 10) + P ll),
a pair of two-state systems is described by a ray in the
tensor product space:

I*) = a00 IO) 8 IO) + a01 IO) 8 11) + a10 11) 8 10) + a11 11) 8 11)
(9)

Whereas two classical bits still require only two classical
bits for their description (or two real numbers if they are
analog), the two qubit system is described by 6 real num-
bers. We see that in general, an n qubit system is described
by 2n+1 - 2 real numbers. For those who are interested in
calculating the properties of quantum systems, this expo-
nential growth is unfortunate; but for those who are inter-
ested in using quantum systems to calculate, this property
provides the fist step toward a more powerful computer.

The 2n different basis vectors which are generated by
taking tensor products of the states 11) and 10) form the
canonical basis. There are a few different notations to de-
scribe these basis vectors. Using one of the 16 basis states
for n = 4 as an example, we may write, depending on the
situation,

I @) = 10) €9 11) @ 11) €9 10) (10)
= 10) 11) 11) IO) (11)
= lOll0) (1‘4
= 16) (13)

where in the last equation the state is labeled according to
the integer which represents the qubits viewed as a single

.. 9

binary number (i.e., 610 = 01102). This last notation is
the most dense; an arbitrary state of an n qubit system is
merely

4

i=O

which is an expression that will occur frequently.
As with the single qubit system, there is a question of

how one can access the information hidden in the state,
only now the problem is more severe. Measuring the qubits
will only reveal a single n bit integer i with any particular
result occurring with probability jail . There may be an
exponentially large amount of information stored in the
state of a quantum system, but it is not at all obvious how
it is to be exploited.

6

B. Quantum gate arrays
Having thus described how quantum information is

stored, the next issue one must address is how it is to be
processed. The most natural way to compute with a set of
quantum bits is with a quantum gate array.

A quantum gate is a unitary transformation acting on
one or more qubits. Essentially, we imagine that the Hamil-
tonian for all the other qubits (upon which the gate does
not act) is zero; the qubits involved in the gate will time-
evolve according to their local Hamiltonian. One important
but limited set of gates are those which simply map one
member of the canonical basis into another; for example:

which is simply a quantum version of the controlled-NOT
gate. If these basis states are ordered in the natural way
(according to the binary number represented), one can
write the transformation as a matrix

[: ; : :] 1 0 0 0

0 0 1 0

which is manifestly unitary. It should be easy to see that all
classical reversible logic gates correspond to permutations
as above; assuming that it is possible to generate any de-
sired unitary transformation, one therefore concludes that
a quantum gate array can perform any computation that
a classical gate array can. The qubits are initialized in
the same manner as the classical bits; the calculation is
performed using the quantum counter-parts of the classi-
cal gates. Throughout the entire calculation, the state of
the quantum computer is always one of the canonical basis
states: it is never in a superposition of multiple basis states
or an entangled state. There is no difficulty in reading the
result. Thus a quantum computer can be easily made to

mimic a classical computer, and the quantum computa-
tional complexity is no worse than the classical computa-
tional complexity. It follows that classical computation is
(in a very real sense) just a limiting case of quantum com-
putation.

Frequently during a quantum calculation, one desires to
perform a classical computation. For example, one may
wish to do a transformation such that

As long as an algorithm exists for computing j (T) , this
transformation can be performed using quantum logic
gates. Moreover, the quantum algorithm is the same as
the reversible classical algorithm, which, as discussed in
the previous chapter, is essentially the same as the original
(presumably irreversible) algorithm.

C. Universality
Of course, permutation matrices of the sort described

above are only a small subset of all possible unitary trans-
formations. For example, the single qubit transformation

has no classical analogue. This transformation (and, in par-
ticular, its multi-qubit extension) is known as the Walsh-
Hadamard transform. It is common for quantum algo-
rithms to make frequent use of this gate.

A natural question to ask is whether or not there exists a
set of universal quantum gates, which can be combined to-
gether to form any possible unitary transformation. Since
there are an infinite number (continuum) of unitary trans-
formations on even a single qubit, this problem is a bit more
subtle than the corresponding classical problem. However,
since any real physical system will posses only finite ac-
curacy, it should be sufficient to find a set of gates which
can be applied so that they will generate an n bit unitary
transformation that is arbitrarily close to any desired n
bit unitary transformation. Fortunately, such gates exist
[SI [39][43][69]. In fact, Lloyd has shown that almost any
2-qubit gate is sufficient for generating arbitrary unitary
tran~formations[69]'~. This later result is important be-
cause it means that one doesn't need to worry much about
what type of interaction Hamiltonian exists between pairs
of qubits: almost any interaction will do.

A general unitary transformation on n qubits is described
by 0 (2 2 n) complex numbers. It is therefore not too sur-
prising that a general n qubit unitary transformation will
require an exponential number of gates. Since a quan-
tum computation is nothing more than a series of unitary
transformations - which when multiplied together are just
one very complicated unitary transformation - this implies

161t is interesting to note that only tw+qubit gates are required
for universal quantum computation, whereas threebit gates were re-
quired for classical reversable logic

10

that most computations will require an exponentially large
number of gates. One of the main goals in designing a
quantum algorithm, therefore, is to see if it is possible to
effect a desired n qubit unitary transformation using only
a polynomial number of quantum gates.

The class of problems which can be solved by a quantum
gate array of polynomial size is called BQP17. In order for
this class to be well-defined, it is important that it should
not depend upon the choice of gates; moreover, it should
also correspond to polynomial-time complexity for other
models of quantum computation, such as quantum Tur-
ing machines. It is clear that quantum gate arrays must be
polynomially equivalent because once one has a set of (con-
stant sized) circuits to effect any desired two qubit unitary
transformation, all gate arrays will look the same. In 1993,
Yao showed that quantum Turing machines and quantum
gate arrays were polynomially equivalent [loll. Moreover,
we know that any physically realistic quantum computer
can simulate any other with only a polynomial overhead,
because a quantum computer is nothing more than a phys-
ical system, and Lloyd has shown [68] that there exist uni-
versal quantum simulators. The class BQP is therefore
quite robust: indeed, one could argue that the quantum
version of the Church-Turing thesis is a consequence of the
laws of physics as they are known today.

The formalism described previously is based upon a sys-
tem composed of a set of individual qubits. However, one
may wish to consider a set of three level systems (a qu-trit),
or even n level systems.18 The mathematics are likely to be
more complex, but one would hope that the fundamental
results should not be effected any more than in the classi-
cal case, where using trits or analog components are of no
impact in terms of computational complexity. In fact, our
quantum formalism is not sensitive to the makeup of the
individual subsystems. The state space of the combined
system is the tensor product of the state spaces for each
individual component system. This is physically reason-
able: one can only store so much information in a single,
local, quantum system, and a reasonable model of com-
putation must combine many such subsystems. Moreover,
this is how the quantum computer gets its power - by
virtue of the exponential growth in the size of the Hilbert
space with respect to the number of subsystems which are
combined. As long as it is possible to perform an arbi-
trary unitary transformation on two subsystems at a time,
it is evident that the model will be universal; conversely,
one can represent the state of any subsystem with a col-
lection of one or more qubits, and since the qubits can be
made to evolve according to an arbitrary unitary transfor-
mation, the more complex system will have no additional
computational power. In some sense, it is the process of
decomposing a large quantum computer into component
subsytems that allows us to employ the gate array model.

All quantum algorithms consist of three steps: First, ini-
tialize the computer into the state (00 ... 0); second, perform

17BQP stands for bounded error quantum polynomial time.
18The situation is somewhat more complicated if the quantum vari-

ables are allowed to be continuous. See Lloyd and Braunstein [70].

a unitary transformation (which is generated through a se-
quence of unitary transformations); third, make a measure-
ment of the computer’s state with respect to the canonical
basis. From this description, one can see that is not possi-
ble for a quantum computer to perform any computations
that are classically uncomputable; a Turing machine can
easily simulate a quantum computer, as long as it is al-
lowed exponential overhead 19. The quantum theory of
computation does not therefore have any impact on what
can be computed, only on how long a computation will
take.

D. Introduction to quantum algorithms

In 1985, David Deutsch suggested the idea of quan-
tum parallelism [40][41]: by placing a computer in a su-
perposition of input states, it could in some sense perform
a large number of computations at the same time. Al-
though his original work was with quantum Turing ma-
chines, the essential idea can be easily seen with the gate
array models discussed thus far. Consider a quantum com-
puter with 1 = 2n qubits, which we will conceptually di-
vide into two distinct registers of n qubits each. The ini-
tial state of the computer will be the zero state, that is
I +) = 10) €4 10) €4 ... €4 IO); we shall also write this state
as I$) = lO,O), that is, by labeling the state with the two
integers that represent the two n qubit registers.

We operate on each of the first n qubits with a Walsh-
Hadamard gate, thus obtaining:

I + > = & (10) + 11)) @ & (10) + 11)) €4 *.*

€45 (IO) + 11)) @ (0) €9 ... @ IO)

- 2n-1

= - l i , O) 1
-6
v u i=o

As in equation (20), one can perform a transformation
1 3 ’) 10) + 1 3 ’) lj(T)) for any computable function f .
However, since the input register is in a superposition state,
one now obtains

2n-1

One thus calculates the value of f (i) for all 2n possible
inputs, without performing any more elementary gate o p
erations than were required to classically calculate f (i) for
a single value. Unfortunately, it is not clear if this ac-
complishes anything: making a measurement on the system
will return only one f (i) chosen at random. Thus a quan-
tum algorithm will accomplish nothing unless it exploits
interference; one must perform another unitary operator
after equation (24) such that the various paths interfere

19A priori, one might assume that a classical computer would re-
quire exponential memory resources to simulate the behaviour of a
quantum computer. It is thus interesting to note that a classical
computer can simulate a quantum computer without requiring expo-
nential memory, as long as it is allowed exponential time [21]. (See
also [83]).

.- 11

with one another. Hopefully, after this additional, inher-
ently non-classical operation, one may be able to make a
measurement on the resulting state and learn some joint
property of all the f (i) . It took seven years to make fur-
ther progress; but in 1992 Deutsch and Jozsa showed the
first example of a problem in which quantum parallelism
could be exploited to obtain a super-classical speedup[42].
Soon after, Bernstein and Vazirani (211 showed the first
exponential separation between a quantum and classical
algorithm (i.e., a problem for which there is a polynomial
time quantum algorithm but no polynomial time classical
algorithm).20 A year later, in 1994, Dan Simon provided a
more elegant problem with an exponential separation [88],
which led directly to Peter Shor’s 1994 discovery of the
factoring algorithml861.

Both Simon’s algorithm and the Bernstein and Vazirani
algorithm rely upon a black box function, which is called
an oracle.21 The oracle is provided an input value z (ei-
ther classical or quantum) from which it computes f(z);
however, one is not allowed to look inside the oracle (thus
“black box”) to see how it does the actual computation.
One wishes to determine how many calls to the oracle are
required to determine a specific property of the function
f(z). It is possible in this context to prove that a quan-
tum computer is more efficient than a classical computer,
as in the previously mentioned papers. Such a result is said
to be “relative to an oracle”, and such a proof is said to
be “relativised” . While these relativised results are inter-
esting, and indicate that a quantum computer probably is
more powerful than a classical computer, they are not as
compelling as a non-relativised speedup. (Unfortunately,
while the Shor algorithm does not rely upon an oracle, it
is also not proven to be faster than a classical algorithm
- it is still possible that someone will discover a classical
algorithm that is just as fast).

One can gain insight into the meaning of the oracle re-
sults by considering Grover’s algorithm [55] [56].(Grover’s
algorithm will be discussed in detail in Chapter 4). In the
most basic version of Grover’s algorithm, one is given (in-
side a black box) a boolean function f(z) over an n bit
input such that the function return zero for all values ex-
cept for a single value zo; one wishes to determine what
the value of zo is. For this reason, it is called a “database
search.” With no additional information, it is readily ap-
parent that a classical algorithm can do no better than to
try values of z until it finds the solution; on average it will

20The Deutch-Josza problem, while difficult to solve on an ordinary
Turing machine, is easy to solve on a probalistic Turing machine. A
probabilistic Turing machine, loosely defined, is an ordinary Turing
machine that has a built in generator of random bits, and that is not
required to solve the problem 100% of the time. The class of problems
that can be solved in polynomial time on a classical probabilistic
Turing machine is known as BPP, and corresponds most closely with
our intutive notion of which problems are tractable in reality. It is
interesting to note that there are a lot of open questions regarding
the class BPP and its relation to other classical complexity classes;
for example, does BPP = PSPACE?

21A black box function is not precisely the same thing as an oracle,
but the two terms are used to mean the same thing in the quantum
computing literature, because the black box is essentially the same
as a Turing machine with an oracle.

take time %, where N = 2n is the total number of possi-
ble values of x . In 1996, Lov Grover showed how this can
be solved with a quantum algorithm in time a: not an
exponential speedup, but still impressive considering the
fundamental nature of the problem. The problem is that
the classical estimate of 9 is predicated on the assump-
tion that one cannot look inside the black-box. However,
if the computer is to execute the code required to calcu-
late f(z), then that code must be available, so restricting
an algorithm from examining the function is an artificial
constraint. Once this constraint is removed, it is no longer
possible to know how many operations are required to find
the solution: it might be that a sufficiently clever algorithm
could look at the code which calculates f (x) and determine
the solution right away, without having to try any values of
x . Thus it is only possible (so far) to prove that a quantum
algorithm is faster than a classical algorithm in a context in
which both of the algorithms are in some sense restricted.
On the other hand, the power of the quantum computer is
readily apparent in the fact that Grover’s algorithm does
not need to look at the function; the f i speedup is com-
pletely independent of the form that f(z) takes. It seems
clear that the quantum computer is somehow more power-
ful than the classical machine, even if we are unable as yet
to prove it. This viewpoint is most convincingly argued by
considering that - while it may be in theory possible for
an efficient classical algorithm to analyze the function f(z)
and find the solution - it seems extremely unlikely that
such an algorithm would exist for an arbitrary f(z).

It is worth noting that Grover’s algorithm is known to be
optimal [ZO]. It thus follows that if quantum computers are
to solve NP-complete problems in polynomial time, it will
require a deep insight into the structure of NP-complete
problems that can be exploited by a quantum computer.
Such an insight is unlikely to be forthcoming. Indeed,
just as the oracle model allows one to demonstrate super-
classical speed-ups, it also allows one to demonstrate quan-
tum lower bounds. In addition to the result just mentioned,
it has been proven that the problems of mean and median
estimation admit only a quadratic speed-up [76], that find-
ing the parity of n boolean values admits only a constant
speed-up [45], and that, in general, almost all functions
admit only a factor of two speed increase [8]. While these
results demonstrate that one cannot in general make an
algorithm faster with “quantum magic’’, and while they
do limit the possible applications of quantum computers,
they also help to clarify which interesting problems have
complexities that may be significantly improved.

E. Simon and Shor algorithms

Simon’s algorithm [88] is a prototypical example of a
quantum algorithm. Because it is not necessary for the re-
mainder of the thesis, the reader may skip this section, if
desired. It has been included, however, because it is the
cleanest and clearest demonstration of the power of quan-
tum computing. It also forms the basis of Shor’s factoring
algorithm [86], which will be discussed briefly at the con-
clusion of this section.

12

In Simon's problem, one is given a 2 -, 1 function that
maps an n bit string into an n - 1 bit string, with the
following special property:

f (i) = f (j) +=+ i @ j = c (25)

where the @ indicates addition over the group Bn-l. (In
other words, each bit is added independently, without
carry, with 1 @ 1 = 0.) (Alternatively, this addition can
be seen to be a bitwise XOR of the two n - 1 bit strings).
Note that this special type of addition has the interesting
property that

for any i and j . The function f is therefore periodic, in the
sense that f (i) = f (i @ c) = f (i @ c @ c) , etc. One is given
an oracle (black box) which computes f for any input i.
The problem is to determine the value of c, with as few
operations (or calls to the oracle) as possible.

It is easy to see that classically, there is no better al-
gorithm than randomly guessing values of i and querying
the oracle until the function returns the same result twice
(at which point one determines e). Since there are 2" val-
ues of i, it is also easy to see that this algorithm requires
exponential time. The quantum algorithm, however, will
run in polynomial time. First, we generate a state as in
(24). Note that this requires only a single call to the quan-
tum oracle. Next, we make a measurement of the second
register.22 This will result in a state of the form

I$) = - (1 % f (a)) + la @ C7 f (a >) >

for a particular value of f (a) chosen at random. This is be-
cause there exist two values of i which correspond to every
possible value of f (i) . Since the system is now in a super-
position of two states which differ by c, it would seem to be
an easy matter to determine the answer. However, measur-
ing the state would reveal just one value, either a or a @ c,
and if we were to repeat the experiment, we would obtain
a different (random) value of a. The information is indeed
contained within the state of the quantum computer, but
it is hidden in a way which makes it difficult to extract.
It is therefore necessary to do something more clever. The
trick is to generate interference between the states by per-

1

4 (27)

We factor out the pure state I f (a)) of the final n - 1 qubits . ,
because it is no longer relevant to the computation. It will
be omitted in what follows (i.e., we will only consider the
state of the first n qubits). We now perform an opera-
tion similar to the Walsh-Hadamard transform that causes
10) * 3 (10) + 11)) and 11) * (10) - 11)).

I$> - " (-l)u'i + (-l)(u@c)'i] (30)
i = O

This step requires perhaps a small amount of explana-
tion. Any state la) will be transformed into an equally
weighted superposition over all li). However, the phases
of the components are determined by la): for every
qubit where la) is originally 11) and li) is also Il), we
pick up a phase of (-1). Hence the state la) maps
into -& li) (-l)u'i and the state I$) transforms as
above. The second step simply reflects the realization that
the only terms in the sum which will not cancel are those
for which c . i = 0.

A measurement of the system will yield a state li) chosen
at random such that c . i = 0. In contrast to the situation
in equation (27), a measurement now reveals information
about the value of c, which is the objective. Indeed, only
O(n) trials are necessary to determine n linearly indepen-
dent vectors i such that c . i = 0. From these, one can easily
determine c. The quantum algorithm is therefore exponen-
tially faster than the best classical algorithm.

The Shor algorithm works in essentially the same way.
It has been known since 1976 that the problem of factor-
ing n can be reduced to the problem of finding the or-
der of xmodn, that is, the least integer r such that xT =
l(mod n). If one considers the function f (a) = xu mod n,
the order r is simply the period of this function. The
Shor algorithm proceeds exactly as the Simon algorithm
described above, with two differences: First, the function
f (a) = xu mod n is different from the function used in Si-
mon's problem. Second, the Walsh-Hadamard transform
used in the last step to find the period of the function
over the group Bn-l is replaced with a quantum Fourier
transform [33] that finds the conventional period over the
ordinary multiplicative group (which is the order T) . More
detailed discussions of the Shor algorithm can be found in
[86], in [87], and in the review by Ekert 1441.

2n-1

-
forming an operation such as the original Walsh-Hadamard F. Accuracy and errors
transform on the first n qubits. First, we shall rewrite the
state of the system in a slightly different form

"

Unlike modern digital computing machines, quantum
computers are analog devices. While on a superficial level

I$) = (1'7 f(')) " l a @ '7 f ('))) (28) information is stored in the phases of the states, and these
are complex numbers. It is important therefore to con-

= [z (la) + la @ c))] @ I f (a)) (29) sider what level of precision is required. For example, it
is known that a classical analog device with exponential

221t is not actu&ly necessary to perfom this measurement; how- Precision Can Solve NP-complete problems in polynomial
ever, it makes the algorithm appear simpler. time; however, exponential precision is not considered to

1 it may appear that the qubits themselves are digital, the

1

.-
13

be reasonable. It is therefore important to determine what
level of precision is required of a quantum computation.

A quantum algorithm is nothing more than a series of
unitary operators applied to an initial state,

I$,) = UTI . . .U~~~UI /$I)) (32)

followed by a measurement of the final state (made with
respect to the canonical basis). Let us suppose that at each
step of the computation, the unitary operators which we
perform are not exactly the operators which we intend.23
Alternatively, we can imagine that there is a little gnome
who performs a small unitary transformation in between
each gate. Hence, the calculation which we actually per-
form is

(33)

where 6 indicates an operator which is close to U ; specif-
ically, if I &) = Ul I$o), then I $ 1) = E I+o) + €1 I &) ,
where €1 is small and all the states are normalized. $,
indicates the actual state vector obtained, which will hope-
fully be close to]$,) , the ideal result. Applying all of the
6 in series, and collecting terms, we find

I-)

(34)

The worst possible situation would occur if all the terms
on the right hand side were to add in phase. This would
yield

1.') - I+,) = (En + en-1 + e - - + €1) (35)

where IE) = IE,) = U, = ... = Un...U2(e1) IEl).
Let us assume that the maximum error occurring with each
gate is E; then

- "

One concludes therefore that the errors grow linearly
with respect to the number of gates applied. Even without
error correction, the required precision of a quantum com-
puter would grow only linearly with the number of gates.
(Note that the number of bits of precision therefore grows
only logarithmically). This level of precision is acceptable
in a "reasonable" model of computation.

Having thus addressed the issue of precision (and uni-
tary gate errors), we now address errors in general. There
are two types of errors which can occur during a quantum
computation: bit flips (Le. 10) - 11) and 11) -+ IO)) and

23The particular argument given here is similar to that in Preskill
[83] and in Kitaev [61].

phase flips (10) - 10) but 11) - - 11)). Smaller errors
(e.g., 10) - 10) - ~ I I)) are merely superpositions
of the error-free state and a small amount of one (or both)
of these error states. On the surface, it would seem to be
impossible to correct for such errors during a quantum com-
putation. Classical error correcting codes are based upon
the idea of redundant information and frequent measure-
ment (e.g., store the bit 1 as three bits 111; as long as only
a single bit error is committed, one can correct for it). But
one is unable to make duplicate copies of quantum infor-
mation (the "no-cloning" theorem), and moreover, one is
unable to detect errors by looking at the state of the com-
puter during the course of the computation, because doing
so would necessarily cause a L'collapse'l of the wavefunc-
tion. Nevertheless, Peter Shor demonstrated [29] [28] that
it is possible to perform quantum error correction, and a
large literature has developed on this topic (e.g., [91] [82]).

I will not discuss quantum error correcting codes in de-
tail here; however, it is important to know of their existence
and to understand the fundamental principles upon which
they are based. The key concept on which all quantum
codes depend is that errors are assumed to be uncorrelated
and local. Uncorrelated implies that the errors are in some
sense random: it is always possible, even with classical er-
ror correction, for a little gnome who knows your scheme
to create errors in your calculation by committing just the
right errors in the right places. Local implies that the er-
rors act on only one qubit (or a few qubits) at a time.
This is physically reasonable. It is likely that, during the
course of a calculation, random atoms may spontaneously
emit photons. It is not likely that all the atoms in your
system will spontaneously emit photons at the same time.
Given these assumptions, and as long as the frequency of
errors is below a certain threshold, it is possible to perform
arbitrarily long fault-tolerant quantum computations [82].

This concludes our discussion of the mathematical for-
malism used in quantum computation. In addition to pro-
viding the necessary background for the rest of the the-
sis, the author hopes to have made a convincing case that
quantum computation is in fact a physically reasonable
paradigm that poses a very real challenge to the strong
form of the Church-Turing thesis. Indeed, it appears most
likely that the strong form of the Church-Turing thesis is
wrong.

G. Potential implementations

Although this document focuses on quantum algorithms,
it would not be complete without at least some discussion
of the possible hardware with which a quantum computer
might be implemented. There is at this time a wide variety
of suggestions for quantum computing devices; below, I will
address a few of the more promising proposals.

Trapped Ions. First suggested by Cirac and Zoller[31],
this scheme uses ions in a linear Paul trap to store quantum
bits. The ground state of an ion is labeled 10) and the 11)
state is a metastable excited state. With a properly timed
laser pulse that is tuned to the energy difference, one can
effect any desired single qubit unitary transformation. One

can measure the state of a qubit with a laser that drives the
(0) state to a short-lived excited state I f) , and looking to see
if the ion fluoresces. Multiple ions in the trap are physically
separated because of their coulomb interaction and can be
addressed individually. The difficult part of this scheme
(like most proposed quantum computer implementations)
is with the two qubit gates. In this case, the trick is to
excite a normal vibrational mode of all the ions in the trap
when a particular ion absorbs a photon. Another laser
pulse can then be used to generate a transformation on a
physically distant qubit in such a way that it depends on
the state of the first qubit.

Trapped Atoms. This scheme was proposed by Pel-
lizzari et. al. [80]. Instead of using trapped ions, it uses
neutral atoms trapped within an extremely high Q opti-
cal cavity. The single qubit operations are similar to those
used in the ion trap; however, the two qubit gates are im-
plemented somewhat differently. In this case, the atoms
interact with the normal modes of the electromagnetic field
inside the cavity. The electromagnetic field is then used as
the mediator of information between qubits, as opposed to
the vibrational modes employed in the ion trap.

Photons. An obvious place to store quantum informa-
tion is in the polarization of single photons. Unlike trapped
ions or atoms, it is relatively easy to keep a photon state
from decohering. The problem is that it is correspondingly
difficult to get photons to interact with each other. One
possible technique is to use small cavity QED, as above,
but use atoms to cause the photons to interact with each
other, rather than the other way around. Kimble has pur-
sued this approach [92] and has been successful in demon-
strating that it is at least possible to generate substantial
photon-photon couplings in this manner.

Nuclear Spins. A lot of recent attention has been gen-
erated by proposals [34] [53] in which quantum computation
is performed using NMR. (The essential idea is the same as
that suggested by Lloyd in 1993, involving arrays of weakly
coupled quantum systems [67].) R F pulses are used to con-
trol interactions between pairs of nuclear spins; because
these spins are well isolated form their environments, they
can have very long coherence times (on the order of sec-
onds). The current NMR quantum computing implemen-
tations differ from the other schemes because they involve
an ensemble of quantum computers which all perform the
exact same computation in parallel; moreover, since it is
not possible to initialize the computer in a pure state, var-
ious techniques are used to create “pseudo-pure states”,
in which the slight deviations from an equal distribution
are exploited so that a computation may be performed. At
room temperature, the unfortunate result is an exponential
loss in signal strength as the number of qubits is increased;
however, if the system is cooled so that kBT N AE, then
one enters a new regime which does not have this problem.
But at such low temperatures, one can no longer perform
liquid NMR, and without the tumbling of the molecules,
there are additional difficulties. It thus appears that with
current technologies it will be difficult to perform compu-
tations with more than 10 or 12 qubits[96][35], although

solid NMR may have the potential for large scale quan-
tum computing. The current state-of-the-art with liquid
NMR is roughly 5 or 6 qubits. However, it is not clear at
this time if these experiments are truly performing quan-
tum computations or if they are acting in a purely classical
regime[26].

Semi-conductor devices. If possible, semi-conductor
devices would obviously be a highly desirable platform for
quantum computation. Unfortunately, it is hard to main-
tain coherence in solid state devices: charge dephasing
times are typically on the order of nanoseconds. DiVin-
cenzo and others have proposed using electron spins as
quantum bits because the spin-coherence times may be on
the order of microseconds, which may be sufficient [66] [27].
Quantum logic operations are performed by adjusting the
exchange coupling between spins in single-electron quan-
tum dots, which is accomplished by varying electric or
magnetic fields, or by adjusting the tunneling barrier. In
a different scheme, recently proposed by Kane[59], silicon
is combined with NMR in an attempt to gain the best of
both worlds. Quantum information is stored on the nuclear
spins of impurity ions in doped silicon, and quantum logic
operations are performed by using gate voltages to con-
trol electrons which have hyperfine interactions with the
nuclear spins.

In conclusion, it is at this stage quite unclear which (if
any) of these proposals will lead to a useful quantum com-
puter. What is clear - unfortunately - is that a useful
quantum computer will not be easy to build, and is unlikely
to exist in the near future.

. -

111. QUANTUM QUANTUM SIMULATOW

24Summary. This chapter discusses the possibility of
using a quantum computer as a quantum simulator. It de-
scribes a new polynomial time algorithm that uses a quan-
tum fast Fourier transform to find eigenvalues and eigen-
vectors of a Hamiltonian operator, and that can be ap-
plied in cases (commonly found in ab initio physics and
chemistry problems) for which all known classical algo-
rithms require exponential time. Fast algorithms for sim-
ulating many body Fermi systems are also provided: both
first and second quantized descriptions are considered, and
the relative computational complexities are determined in
each case. In order to accommodate Fermions using a fist
quantized Hamiltonian, an efficient quantum algorithm for
anti-symmetrization is given. A simulation of the Hubbard
model is discussed in detail, as well as a problem from
quantum chemistry. I find that classically intractable and
interesting problems from atomic physics could be solved
with between 50 and 100 quantum bits.

A . Introduction

Since the discovery by Shor of a quantum algorithm
for factoring in polynomial time [86], there has been
tremendous activity in quantum computing. Recent re-
sults, some of which were discussed in the previous chap

24The work described in this chapter is based upon [I] and 13).

.. 15

ter, include the first experimental demonstrations of work-
ing quantum logic gates [75] [92], quantum error-correcting
codes[29] [28][91][82], and many novel proposals for the de-
sign of actual quantum computers [31] [67][90][7][77]. De-
spite these advances, however, the technical hurdles that
stand in the way of factoring a large number on a quantum
computer remain daunting [94] (781 [63]. On the other hand,
the problem of simulation - that is, the problem of model-
ing the full time evolution of an arbitrary quantum system
- is less technologically demanding. While thousands of
qubits and billions of quantum logic operations are needed
to solve classically difficult factoring problems[9], it would
be possible to use a quantum computer with only a few
tens of qubits and perhaps a few thousand operations to
perform simulations that would be classically intractable.
A quantum computer of this scale appears to be a more
realistic possibility.

Because the size of the Hilbert space grows exponentially
with the number of particles, a full quantum simulation de-
mands exponential resources on a classical computer25. A
system of only 100 spin 1/2 particles, for example, requires
2loo complex numbers to merely describe a general spin
state. It is clear that on a classical computer, a simula-
tion of this system is in general intractable. This expo-
nential explosion severely limits our ability to perform true
“ab initio” (first principles) calculations; since it is obvi-
ously not possible to even describe the state of anything
but the smallest quantum systems, one must resort to var-
ious approximation techniques to calculate the properties
of interest. The idea that a quantum computer might be
more efficient than a classical computer at simulating real
quantum systems was first proposed by Feynman (long be-
fore Shor’s algorithm), but he speculated that the problem
of Fermi statistics might prevent the design of a univer-
sal quantum simulator [46]. This chapter will deal explic-
itly with the problem of Fermions, in part by describing a
quantum algorithm for antisymmetrization which executes
in polynomial time. More recently, Lloyd has shown how a
quantum computer is in fact an efficient quantum simulator
[68]. In this chapter, I shall provide the first detailed algo-
rithms for a quantum Simulation, using the Hubbard model
in both first and second quantized formalisms. To empha-
size the algorithmic aspect of this work, many subroutines
executed by the quantum computer will be described with
pseudo-code instructions as well as with words.

Other recent work in quantum computation has revealed
various techniques for simulating physics on a quantum
computer [68] [l] [23] [lo21 [99] [64]. However, while other
work has described a variety of algorithms for time evolv-
ing a quantum state [68][1][23] [102][99], there has been

25At least, it is believed to require exponential resources. If a
method were found to perform classical simulations of quantum me-
chanics without an exponential overhead, than all quantum algo-
rithms could be reduced t o classical algorithms - implying, among
other things, a polynomial time classical factoring algorithm. In this
sense, the problem of performing a quantum simulation is at least as
hard as any problem in BQP. (However, because of a mathematical
technicality, which there is no space to discuss here, it cannot be
called BQP complete).

comparatively little work done on algorithms which cal-
culate static properties of a physical system [64] [102]. In
particular, of all the questions which one might ask about
a quantum system, there is one most frequently asked and
for which one would most greatly desire an efficient alge
rithm: What are the energy eigenvalues and eigenstates?
This chapter will provide a quantum algorithm that can
find eigenvalues and eigenvectors of a Hamiltonian opera-
tor in cases that occur frequently in problems of physical
interest. Moreover, the algorithm requires an amount of
time which scales as a polynomial function of the number
of particles and the desired accuracy, whereas all classical
algorithms (with known complexity26) require an exponen-
tial amount of time.

Hence, this chapter provides for the first time a com-
plete and detailed quantum algorithm for simulating and
calculating the properties of a system of physical interest,
and describes also the first and only other known, well-
defined algorithm, other than the Shor algorithm and cer-
tain artificial problems constructed explicitly for this pur-
pose [21][88], that is thought t o gain an exponential speed
increase by exploiting quantum computation. This chapter
also attempts to make a careful estimate of the quantum
resources that are required to solve a classically intractable
problem, and finds that only 50-100 qubits are necessary.
This estimate is more than an order of magnitude smaller
than previous estimates of the qubits required to factor
“interesting” numbers.27

B. The fermion problem and the Hubbanl model
This section will discuss how one performs a quantum

simulation of a many-body Fermi system, using the Hub-
bard model as a concrete example. The algorithm used to
perform the simulation could be implemented on a variety
of possible hardware schemes: the actual implementation
of the quantum computer is not relevant, as long as it sup-
ports universal quantum computation[6] [39] 1431 [69]. (How-
ever, different physical implementations may of course be
better or worse suited for different problems).

B.l Description of the system

The problem considered here consists of n particles, each
of which can be in any of m single particle states, labeled
1. .m. These states might be sites in a lattice, or atomic
orbitals, or plane waves, etc. The mapping of the model
system onto the qubits of the computer depends on whether
we choose a first or second quantized description. In many
respects, the second quantized form appears naturally well-
suited for quantum computation of Fermi systems: the oc-
cupation of each state must be either 0 or 1, which maps
directly to the state of a qubit. In this case, the memory
needed to map the state of the entire n particle system is

261t is possible that some Quantum Monte Carlo methods may
scale polynomially for certain problems, but the scaling is not known.
Moreover, these techniques typically have additional difficulties with
Fermi systems and with excited energy eigenstates.

27Because of the obvious difficulties in constructing a quantum com-
puter and maintaining coherence, it is important to look for problems
which require as few qubits as possible.

16
I .

m qubits (independent of TI).,^ To treat a first quantized
Hamiltonian, one may imagine a quantum word, or qu-
word, as a string of qubits of length log, m; one qu-word
represents any integer in the range l..m, and, consequently,
the state of one particle. The state of the entire physi-
cal system being simulated can therefore be represented
by n qu-words, or n log2 m bits. If the number of parti-
cles is much smaller than the number of possible states, a
first quantized representation may be vastly more efficient
(nlog, m qubits vs. m qubits). In either representation, if
the simulated physical system is in a superposition of many
direct product states (as it is in general), then the quan-
tum computer will be in a corresponding superposition of
states in order to represent the correct physical state of the
simulated system.

B.2 Fermions in the second quantized formalism
The problem of Fermions is handled more easily in the

second quantized form because the statistics are incorpo-
rated into the raising and lowering operators. As usual,
the calculation begins with all qubits in the 10) state. One
can prepare the system in any state as long as it can be
reached from the zero state using a relatively small num-
ber of quantum logic operations (that is, polynomial in m).
Examples of such states include those in which the n par-
ticles are localized in individual lattices sites, momentum
eigenstates, thermal states of non-interacting particles, and
states in which particles obey k-particle correlations or en-
tanglements (for small k) . Thus Fermi statistics do not
pose any additional complications for system preparation
in the second quantized formalism. Because the statistics
are incorporated into the raising and lowering operators,
the additional complications occur during time-evolution.

In the Hubbard model, electrons move about a lattice of
sites. Each site may be empty or occupied by a spin up
electron, a spin down electron, or two electrons of opposite
spin. Two qubits are therefore required to represent the
four possible states of each site. The Hamiltonian for the
system is

m

(37)
i=l < i , j>u

In the first term, which corresponds to potential energy, VO
is the strength of the potential, and ni, is the operator for
the number of Fermions of spin 0 at site i. In the second
term, which corresponds to kinetic energy, the sum < i , j >
indicates all neighboring pairs of sites, t o is the strength of
the “hopping”, and c:,, and cjbare operators for creation
and annihilation, respectively, of a Fermion at site i and
with spin 0. The computer simulates the Hubbard model
by performing the unitary operation U = e-*Ht on suit-
ably encoded states. This can be accomplished most easily
by splitting the Hamiltonian into a sum of local terms H j
and repeatedly applying the operators Uj = e-7; 3 n , to

28For Bose particles, where the occupation number of each state can
be any integer in the range O..n, log n qubits are needed to represent
each state, yielding a total of rn log n qubits.

‘ H . L

evolve local parts of the system over small time slices i,
in series. (See Ref. [68] for further discussion of this tech-
nique; it will also be described in more detail below). Thus
it suffices to describe algorithms which perform the time-
evolution corresponding to each local term in the Hamil-
tonian. To effect the time evolution corresponding to the
potential energy terms Vonipil, the following sim-
ple algorithm will suffice: consider each site one at a time;
for each site, if it is occupied by two electrons (of oppo-
site spin), advance the phase of the entire state by -fVo$.
This subroutine requires O(m) operations. It is often con-
venient to describe a quantum algorithm in terms analo-
gous to the pseudo codes used to describe classical algo-
rithms; the previous algorithm then appears as follows:

loop i over sites
i f s i t e i is occupied by two e lectrons,

set f lag qubi t
use cont ro l led ro ta t ion to advance phase

of flagged components
undo i f (to res tore the f lag qubi t)

To calculate the effect of the hopping terms x<i,j>u toclucju
requires a slightly more complicated algorithm: first, loop
over all pairs of (physically) neighboring sites i and j , and
consider hopping between each pair of sites separately. For
each pair i, j , count the number of occupied states which
fall between i and j when the system is written in second
quantized form. A flag is set to the parity of this number,
which indicates whether or not a change of sign is intro-
duced when hopping between the two sites. It is now easy
to perform the time evolution Vi because the action of the
operator takes place in the two qubit space i , j ; a simple
two qubit unitary operation is performed that diagonalizes
the Hamiltonian in this space (depending upon the flag),
and the phases of the eigenstates are then advanced by
the appropriate amount. In pseudo code, the algorithm
appears as follows:

loop i over s ta tes
loop j over neighbors with i > j

count s t a t e s occupied between i and j
l e t f l a g q u b i t = pa r i ty of t h i s number
diagonalize bits i , j according t o p a r i t y

b i t
advance phase

undo diagonalize
undo counting and restore f lag qubi t

Assuming that the number of neighbors is a constant, the
loops execute O(m) times. It takes no more than O(m) op-
erations to count the occupancy of the intervening states,
and it follows that the entire algorithm for simulating the
second quantized Hubbard model executes in O(m2) quan-
tum logic operations.

B.3 Fermions in the first quantized formalism

Fermi statistics are more difficult to handle in the usual
first quantized description, because it is necessary to ini-
tialize the quantum computer into an antisymmetrized su-
perposition of states corresponding directly to the actual
physical state of the system. As there are n! states in the

17

superposition, one needs a fast quantum algorithm for gen-
erating this superposition state in order for the approach
to be tractable.

The algorithm described below accepts as input a string
of n qu-words (representing the state of the physical system
being modeled) and generates an antisymmetrized super-
position of n! states in O(n2) time2'. Note that without
further restriction, antisymmetrization is an irreversible
process and cannot be performed by a reversible quantum
computer: there are n! input states which correspond to
the same antisymmetrized state (modulo an overall phase).
One must therefore add the additional requirement that
the input state is ordered. The correspondence between an
ordered n-tuple of qu-words and an antisymmetrized su-
perposition is one to one. In fact, this observation is in
some sense the key to the algorithm.

System preparation in the first quantized formalism
therefore begins by first initalizing the computer into an
unsymmetrized state and then antisymmetrizing that state.
Placing the system in any (unsymmetrized) direct product
state is easy: simply place each particle in the appropri-
ate single particle state. These single particle states might
include, for example, those which are localized in posi-
tion space, momentum space (obtained by using a quan-
tum FFT), and thermal states. The system could also be
initialized into states with arbitrary k-particle correlations
or entanglements by performing quantum logic operations
in the appropriate k-particle space, requiring only O(m2k)
operations in the general case, and often far fewer.

Antisymmetrization is accomplished in four main steps,
summarized below:

Step I. Initialization of the input state. Imagine that
there is a string of qubits which are all initially set to zero,
and define three registers A, B, and C, each consisting of
n qu-words (nlogm qubits). The qubits in register A are
initialized to the ordered string of qu-words which represent
the input state of the system . The algorithm is unaffected
if this state is a superposition of several ordered n-tuples.

Step 11. Generating n! states. We begin by creating the
following superposition of states in register B:

(38)

This is accomplished with O(n(logm)2) steps: by perform-
ing appropriate rotations on each qubit, one at a time, the
computer is placed in a superposition of n! unique states.
For example, the sum -&(IO) + 11) + ... + IS) + 17)) is easily
generated by rotating three qubits from the state (0) into

a similar manner, one qubit at a time, by using controlled
rotations that are conditioned on previous qubits.

Step 111. Transform into permutations of natural num-
bers. The goal of this third step is to transform the su-
perposition of states in register B into the superposition

permutations on n objects. This is an equal superposition
of the states representing all the permutations of the first n
natural numbers. The basic idea is as follows: let B[i] indi-
cate the ith qu-word in register B; map B[i] into a qu-word
B'[i] by setting B'[i] equal to the B[2Ith natural number
less than n which does not occur in B'[1] ... B'[i - 11. For
example, the state 11111) maps into the state 11234) ; the
state 13321) maps to the state 13421) . This transformation
is accomplished as follows:

- 1 CUES, lc(l..n)), where Sn is the symmetric group of

loop i over qu-words 2. .n
Sort B[1] . . . Bc i -11

{Note: t h i s will generate work b i t s f o r
r e v e r s i b i l i t y }

loop j from 1 t o i-1

end loop j
Undo Sort {this will a lso c leanup the work bits}

i f BCjI <=B [il then increment B [i]

end loop i

The algorithm described above requires only O(n2) oper-
ations (up to polylogarithmic factors). To prepare for the
last phase of the algorithm the n-tuple 1,2,3 ... n is then
assigned to register C , leaving the computer in the state:

Step IV. Sorting and unsorting. The algorithm pro-
ceeds with a series of sorting and unsorting operations. As
in Step 111, a string of work qubits is required so that the
sorting operations are reversible. Any sorting algorithm
can be used; however, a heap sort is recommended, be-
cause it requires O(n log n) operations in all cases and only
n logn scratch q ~ b i t s . ~ ' The first sort orders register B
with a series of exchanges and scrambles A and C with the
same series of exchanges. The resulting state is

- I.(Q)) I1.n) la(l..n)) lsmutch)
1
n!

U E s,

At this point, one has already obtained a symmetrized su-
perposition of the input states, but it is entangled with
many other qubits. One can antisymmetrize simply by
counting the number of exchanges made during the sorting
operation and advancing the phase of that component of

the state (IO) + 11)). States of the form & ti) for 30Note that in a quantum algorithm such as the one described here,
values of that are not powers of two can be generated in the complexity of the sorting is the worst-case complexity, because

one cannot look at the state of the quantum computer to determine if
the sorting has been completed, and because there are undoubtedly

29The complexities in this section are often specified only up t o some elements in the superposition which will take the worst-case
a poly-logarithmic factor. For example, the entire algorithm is more time. Thus a Quicksort, which requires O(n1ogn) operations on
accurately described as O(n2(logm)2). average, would require O(n2) operations in the quantum implemen-

tation.

18

the superposition by T (i.e., flip the sign) if this number
is odd. (If one wishes to obtain a symmetrized state for a
simulation of Bose particles, one can simply leave the state
as it is and proceed). The algorithm continues by revers-
ing the sort on register B, but leaving registers A and C
unchanged. The qubits contained in B and C are then re-
dundant: in each component of the superposition, if B[i] =
n, then C[n] = i. This redundancy allows B to be set to zero
reversibly. By then sorting A and C together, eliminating
C, and unsorting, one obtains the desired antisymmetrized
state. Note that in the final unsorting operation, the al-
gorithm relies upon the fact that the ordering of the input
state !\E) was.stipulated to be the same as the ordering of
the integers l..n in register C (so that antisymmetrization
would be reversible); if this were not the case, the algc-
rithm would fail. The entire process is completed in O(n2)
operations.

Because the input state is now fully antisymmetrized,
time evolution is in principle straightforward. Using the
same technique as before, the Hamiltonian is split into a
sum of terms Hj and the corresponding time evolution o p
erators Uj = e-K J n are applied to the state in series.
(The antisymmetry of the state will not be effected by
time step errors that occur during this process; although
each individual Uj does not preserve antisymmetry, their
products do exactly.) Each Uj can be performed by an a p
propriate series of quantum logic operations; the actual
sequence of gates required can be determined by inverting
the Campbell-Baker-Hausdorff formula. Using this proce-
dure, O(m2) steps are required to perform an arbitrary one
particle operator Uj, and O(m4) operations are required to
perform an arbitrary two particle operator. It is there-
fore possible to simulate in polynomial time any system
of Fermions using the first quantized description. For the
special case of the Hubbard model, the simplicity of the
Hamiltonian allows one to do better. I describe below how
to perform each Uj in only O((1og v ~) ~) steps. To begin,
consider the Hubbard model Hamiltonian in its first quan-
tized form:

i H . l

where (ic~(T(jc~) = to6<i,j> , and (i T,i I (V(i T,i 1) = Vo
are the only nonzero matrix elements of V. As before, the
potential energy terms are easier because they are diagonal.
For a given pair of particles, simply determine if they are
at the same site and perform a controlled rotation if they
are. In code:

loop i, j over p a i r s of p a r t i c l e s
i f i, j a re at same s i t e s e t f l a g q u b i t

use con t ro l l ed ro t a t ion t o advance phase
of f lagged components

undo i f (t o r e s to re t he f l ag qub i t)
In order to perform the time evolution corresponding to

the kinetic energy terms, we focus on one particle at a time.
For each particle, the idea is to decompose the kinetic en-
ergy terms into a sum of block diagonal matrices and then

diagonalize the sub-blocks in each matrix in ~arallel.~’ For
simplicity of explanation, consider a 1-d Hubbard model
and ignore spin. The general case is a straightforward ex-
tension. In the 1-d spinless case the kinetic energy part of
the Hamiltonian can be written

T h(1, 2) + h(2,3) + h(3,4) + ... + h (v ~ - 1, m) (42)

where h(i, j) is the piece of the Hamiltonian that corre-
sponds to hopping between sites i and j : all matrix ele-
ments of h(i , j) are zero except (iIh(i,j)lj) = (j lh(i , j) l i) =
to . One can rewrite the previous expression as follows:

T = TI + T2 (43)
TI = h(l,2) + h(3,4) + h(5,6) + .._ (44)
T2 = h(2,3) + h(4,5) + h(6,7) + (45)

The operators TI and T2 are in block diagonal form. To
fully diagonalize each matrix (separately), perform quan-
tum logic operations on each state to transform the state
number into two quantum numbers labeling the block and
the location within the block (0 or 1). For example, to diag-
onalize T I , map the state In) into I(n + 1) div 2, nmod 2)
(where x div 2 indicates the greatest integer less than or
equal to x/2). Because TI is block diagonal and only mixes
states within each block - and because all states within the
same block have their first quantum number in common
- the action of 2’1 takes place entirely within the space of
the second quantum number. In this one qubit space it is

simply the matrix t o (). Thus all the blocks can

be diagonalized in parallel by diagonalizing this trivial 2x2
matrix in the one qubit space of the second quantum num-
ber. Each state in the superposition is then advanced by
the appropriate phase, and all the previous steps are re-
versed. The algorithm requires only O((log v ~) ~) quantum
logic operations.

B.4 Reading the final state
Having thus described how to prepare a quantum com-

puter in a state that is analogous to the initial state of a
many body Fermi system - and how it can be programmed
to simulate that system’s time evolution - one must now
consider what information can be extracted from a quan-
tum many-body simulation. It is obviously impossible to
obtain the entire wavefunction (no classical memory could
hold it). Rather, the “answer77 is obtained by performing a
series of measurements on the qubits, one at a time. Each
such measurement will yield either a 10) or a 11). It is thus
possible to measure any physical property of the wavefunc-
tion that can be expressed in terms of such local variables.
To obtain useful information about the physics of the sim-
ulated system, one must initialize the quantum computer,
simulate time-evolution, make a measurement, and then
repeat this process a sufficient number of times to acquire
a statistically significant result.

31Because one often encounters near-diagonal operators in various
problems, this technique may likely be useful in other circumstances
besides simulations.

19

* '
One important example is the electronic charge density

distribution. In the second quantized representation, one
performs measurements at each site to determine the prob-
ability of occupancy. The number of such measurements
required to obtain some desired accuracy E varies as
(Le., the accuracy grows as a polynomial function of the
number of trials). In the first quantized representation,
the same result is obtained by measuring the location of a
given particle and generating a histogram of locations from
repeated trails.

It is possible to obtain two-particle correlation functions
and even Ic-particle correlations using a similar approach
(requiring roughly O (E - ~ ~ ~) trials, where 6 is the density of
points in the histogram and E is the desired accuracy). The
momentum distribution function can be obtained by per-
forming a quantum FFT before sampling the wavefunction.
From the one and two particle densities and the momen-
tum distribution, it is possible to calculate the expected
energy of the wavefunction.

A variety of other techniques might be used to obtain
other types of information: for example, one could obtain
scattering amplitudes by simulating the motion of an elec-
tron through a charged medium and measuring the prob-
ability of its emerging with different momenta. Or, one
might perform a quantum simulated annealing by time-
evolving the system in contact with a simulated heat bath.
By then employing the previous techniques one could ob-
tain information about the system's ground state.

C. Finding eigenvalues and eigenvectors
Although the techniques described in the previous sec-

tion allow one to initalize a simulation in a variety of physi-
cally interesting states, time evolve that system, and make
measurements to learn the relevant physical information
about the final state, it is not clear how one can determine
the properties that are often of most interest: eigenvalues
and eigenvectors. This section provides an algorithm for
finding this information.

C.l Statement of the problem
The problem to be solved will be formalized as follows.

Consider the time-evolution opera_tor f i = which
corresponds to the-Hamiltonian H,-and an approximate
eigenvector V, of U (and thus of H) that can be gener-
ated in quantum polynomial time; Le., the machine can be
placed into a state corresponding to V, using a polynomial
number of quantum logic operations. 'Call the true eigen-
vector V and the true eigenvalue X,. If the state Vu satis-
fies the property that I(VulV) l 2 is not exponentially small -
that is, the approximate eigenvector contains a component
of the actual eigenvector that is bounded by a polynomial
function of the problem size - then V and X, can be found
in time proportional to 1/ I(ValV)12 and 1 / ~ , where E is the
desired accuracy.

Intuitively, what the algorithm does is to resolve the
guess into its non-negligible components ancdetermine the
corresponding eigenvalues. If the operator U (and thus its
eigenvectors) is of exponentially large dimension - which

it typically is - there are no known classical algorithms
that can find even the eigenvalues in polynomial time. Al-
though the requirement that there exist an initial state
vector V, with the specified properties may appear to be
overly restrictive, it is frequently (if not usually) possible
to obtain such a guess for "real" problems using existing
classical techniques. For example, in any physical system
with discrete energy levels that are not exponentially close
together near the ground state (such as an atom), if it is
possible to obtain classically any state vector with expected
energy merely less than the first excited state (by a non-
exponentially small amount), then this state vector must
contain a non-negligible component of the ground state and
- although it may not remotely resemble the ground state
- could be used as the approximate state V, to determine
the true ground state and ground state energy in polyno-
mial time. In fact, for a system with discrete energy levels,
almost any physically reasonable initial state is likely to
contain non-negligible components of all nearby eigenvec-
tors (which this algorithm would therefore find). Finally, if
for some problems it is not possible to obtain classically an
approximate state with the desired properties, it may of-
ten be the case that the state vector V, may be generated
using a quantum algorithm, such as quantum simulated
annealing.

(2.2 Eigenvalues and eigenvectors via quantum FFT
The core of the quantum algorithm is a subroutine which

applies to any U that can be implemented in quantum poly-
nomial time. (It was shown in [68] that the time evolution
operator corresponding to any local Hamiltonian can be
implemented in polynomial time on a quantum computer.)
(As an example, the Hubbard model, as discussed in the
previous section, would be one possible f i for which the
necessary quantum logic gates are known in detail). A
similar subroutine was previously (though independently)
described by Cleve et. al. in [37] to find the eigenvalues
of unitary operators. Cleve et. al. show how one can ob-
tain an eigenvalue with exponential precision if one is ini-
ti;tlk given the-eigenvector and devices that can perform
U ,U2,U4, ... ,U2"; they use this subroutine in a modified
version of Shor's algorithm by randomly sampling from the
eigenspectrum. Of course, we have no way to generate fi2"',
nor do we seek random eigenvalues or exponential precision
(polynomial accuracy will suffice). However, we employ es-
sentially the same subroutine in an algorithm that takes an
estimate of an eigenvector (e.g., the ground state) and uses
it to find the eigenstate itself. (In its original form, this
routine is not useful for finding eigenvectors: in a Hilbert
space of exponential dimension the chances of getting the
same eigenvector twice are exponentially tiny. The situa-
tion is similar to Shor's use of the quantum Fourier trans-
form: the quantum Fourier transform, developed by Cop-
persmith[33], does not in and of itself supply an exponential
speed up over classical computation. It is only when used
as a subroutine in a quantum algorithm for factoring that
it allows an exponential speed up over all known classical
algorithms).

The algorithm will proceed as follows: Consider a quan-
tum computer consisting of m+l+w qubits, where a total of
m qubits (to be called the index bits) are used for an FFT,
a total of I qubits describe the Hilbert space in which the
operator 6 acts, and w extra working qubits are required
for temporary storage. Let M = 2m. The accuracy of the
result will grow as 1/M - therefore, the required number
of qubits will scale as the log of the accuracy. Assume that
the m index qubits are initially in the state 10) and that the
1 qubits are initially in the state Va; i.e., the initial state is

19 >= 10 >]Vu > (46)

where the w work qubits are assumed to be (0) unless spec-
ified otherwise. Perform a 7r/2 rotation (Walsh-Hadamard
transform) on each of the m index qubits to obtain the
state

(47)

Next, one performs a series of quantum logic operations
that transform the computer into the state

. “I

This tLansformation is accomplished by applying the op-
eration U to the second set of 1 qubits (which are initially
in the state [Vu)) a total of j times. It can be implemented
easily by performing a loop (indexed by i) from 1 to M .
Using standard quantum logic operations, set a flag qubit
to the value 11) if and only if i <j and perform the oper-
ation 8 conditioned on the value of this flag. Thus only
those components of the above superposition for which i<j
are effected. Finally, undo the flag qubit and continue with
the next iteration. After M iterations, the state above is
obtained.

At this point, it is helpful to rewrite the s tge in a slightly
different manner. Label the eigenvectors of U by the states
\I&) and the corresponding eigenvalues with & . One can
then write

(49)
k

in which case the state (48) above can be rewritten as

M-1

It is now self-evident that a quantum FFT performed
on the m index qubits will reveal the phases W k and
thereby the eigenvalues x k . The quantum FFT requires
only poly(m) operations, whereas the accuracy of the re-
sult will scale linearly with M = 2m. Each frequency is
seen to occur with amplitude Ck = (Val&); by performing
a measurement on the m index qubits, one thus obtains
each eigenvalue with probability l C & l 2 . Only a polynomial
number of trials is therefore required to obtain any eigen-
value for which Ck is not exponentially small. If the initial
guess IV,) is close to the desired state (i.e., I < VulV > I 2 is
close to l), then only a few trials may be necessary.

Moreover, once a measurement is made and an eigen-
value X k is determined, the remaining 1 qubits “collapse7’
into the state of the corresponding eigenvector. One is
likely to be interested in various properties of the eigenvec-
tors, and these can be determined by making various mea-
surements on the state, as described in the previous sec-
tion. For ab initio quantum calculations, easily obtainable
properties include those of greatest interest: charge den-
sity distributions, correlation functions, momentum distri-
butions, etc. Of course, the state I &) is still in some sense
“trapped” inside the computer. But since it is impossible to
store as classical information the 2l phases associated with
the state, one cannot possibly do better. Nevertheless, the
relevant physical information can be extracted efficiently
from the quantum computer.

An interesting subtlety occurs if the eigenvalue found
above is degenerate or nearly degenerate (that is, there are
several eigenvalues which differ by less than the accuracy
l/M). (Note however that nearly degenerate states can
be resolved in polynomial time, if desired, as long as they
are not exponentially close together.) For degenerate or
nearly-degenerate eigenvalues, the measurement projects
the system into the corresponding subspace. One can then
determine properties of this subspace - that is, the rele-
vant physical properties of the system - through additional
measurements as described above. However, one can also
use this technique to detect the presence of a degeneracy
by simulating a small perturbation or by varying the initial
conditions.

C.3 Applying the algorithm

Let us now consider more precisely how to use this sub-
routine to find the eigenvectors and eigenvalues of a “real”
Hamiltonian. Generally, one wishes to find energy eigen-
states for a Hamiltonian of the form

n n

i=l i> j

If we write as eiwk and exchange the order of the qubits
so that the labels 1 4 k) appear first, the result is seen then
most clearly:

where n is the number of particles, Ti is the kinetic energy,
V , is the external potential, and V,j is the interaction be-
tween the particles. (Other terms can be included, as long

1 “I as they act locally). Because the Hamiltonian is Hermitian,
I*) = - c c k I$k) eiwkjlj)

J ; i ? k j = O operator U (t) = e--iHt, which is unitary and has the same
(5 2) one applie_s the steps described above to the time evolution

, ,

eigenvalues and eigenvectors. This time evolution operator
is generated using the same technique as in the previous
section (see also [68]); the key idea is to write H = CHi
(where each Hi acts on only k qubits at a time) and

A u (t) = e - iHt = (e - i H * ~ e - i H 2 ~ . . . e - i H k ~) m

+ [Hi, H j] & + ...
i> j

(54)

Let Vi = Each term Vi can be implemented effi-
ciently, because it acts in a space of only k quantum bits,
where k is small. For large enough m, the second term on
the right (and the higher order terms) approaches zero. It
is therefore possible to generate 6(t) by acting on the state
with each Vi in series, a total of m times. In order to sim-
ulate 6(t) with an accuracy E , one needs to apply O(t2/E)
quantum logic operations.32

For a specific problem, the form of the matrices Vi de-
pends greatly on the basis set chosen to describe the Hilbert
space. Moreover, the choice may strongly impact the size of
the basis required to describe the system accurately. Virtu-
ally any basis set may be used: position space, momentum
space, wavelets, single electron solutions for an effective
potential, etc. As long as the single particle basis is of a
fixed size, then the operators Vi can always be calculated in
the chosen basis and implemented using O(d4) operations,
where d is the dimension of the single particle basis set
[6]. On the other hand, there is a trade-off between mem-
ory and speed. By using the position or momentum space
representation, one needs only O(poly(k)) = O(poly(1og d))
operations to perform each Vi; however a large number of
qubits are required to describe the eigenstates accurately.
By choosing a more elaborate basis set, one can vastly re-
duce the required number of qubits, but a much larger num-
ber of quantum logic operations O(d4) may be necessary
to implement each Vi . (The trade-off described here is
similar to the trade-off between first and second quantized
representations discussed in the previous section). Thus
one finds that, just as with conventional computations, the
choice of basis sets in the quantum computation will de-
pend upon the specific problem at hand and the specific
capabilities of the actual computing machine.

Normally, the initial state V, will be the result of a classi-
cal calculation, for example, a Hartree-Fock calculation or
configuration interaction calculation. Any ab initio tech-
nique which results in a known wave function can be used.
(Note that this does not include those techniques which uti-
lize density functional theory, as we require a wavefunction,

32Since U(t) has the same eigenvalues and vectors for all t , this
might lead one to falsely conclude that the number of operations nec-
essary to find the eigenstates to a given accuracy could be reduced
by choosing a shorter length of time t for the operator U(t). How-
ever, the algorithm requires one to calculate U‘, and since U(t)M =
U(Mt), one sees that U = U(t) must be calculated with greater preci-
sion if UM is to be calculated for a fixed precision. In fact, since the
eigenvectors are determined with a precision proportional to M, the
number of quantum logic operations required to calculate the energy

21

not simply a charge density distribution). If the input wave
function is not already symmetrized or antisymmetrized,
one may use the algorithms described in the previous sec-
tion to do so efficiently.

Finally, let us consider a state-of-the-art ab initio cal-
culation of atomic energy levels in order to compare the
quantum algorithm described above with known classical
techniques. Problems from atomic physics serve as a partic-
ularly good benchmark because extremely accurate exper-
imental data is widely available. The quantum algorithm
corresponds most closely to what is known as “complete
active configuration interaction” or “full configuration in-
teraction” techniques, because the many-particle basis set
includes all possible products of single particle basis vec-
tors. This approach is most valuable in situations where
the correlation energy is large and where many “configu-
rations” are of similar energy (this typically occurs when
many electrons are in open shells). Unfortunately, it is
difficult to state precisely the minimum size problem for
which the quantum calculation surpasses the best classical
calculations, because a variety of sophisticated techniques
are used to avoid the exponential explosion in basis states.
That is, the most accurate classical calculations do not em-
ploy directly the “full configuration interaction” method.
Based on [58], however, it appears that a calculation of the
energy levels of B (5 electrons), using roughly 20 angular
wavefunctions and 40 radial wavefunctions per particle - for
a total of 800 single particle wave functions and therefore
8005 full many-body basis states - may provide more
accurate results than any classical calculation performed to
date. At the very least, such a calculation would reveal sci-
entifically interesting (and classically unobtainable) results
with respect to electron correlation energies in B and the
relative importance of various orders of excited configura-
tions.

A quantum calculation of the B ground state, using a
basis set as described above, can be accomplished with 60
qubits: 10 per particle (allowing 1024 states in the single-
particle basis) to represent the state of the atom (for a total
of 50 qubits), 6 or 7 qubits for the FFT, and a few addi-
tional “scratch” q ~ b i t s ~ ~ . Unfortunately, the two particle
operators (generated by the coulomb attraction between
pairs of electrons) take place in a subspace of dimension
(210)2; they therefore are represented by matrices with 240
elements. Implementing such an operator by brute force is
likely to remain intractable for the foreseeable future. How-
ever, it is possible to perform the necessary transformation
using a quantum algorithm. One possible technique is to
change basis sets: by representing the interacting particles
in position space, instead of with the orbital basis set, it is

33The number of qubits required for the FFT is not as large as
one might at first suppose, based on the earlier statement that the
accuracy scales linearly with the size of the FFT. This statement is
true only for a fixed U. By changing U - in particular, by increasing the
length of time t in U(t) - one can obtain the eigenvalues to arbitrary
precision using a ked number of FFT points. However, the number
of points in the FFT must be sufficiently large so as to seperate the
freauencies corresuondinn to distinct eigenvectors. This is how the

eigenstates to a precision E is seen to scale as estfmate of 6 or 7-qubits1(64 or 128 FFT points) is made.

easy to calculate the coulomb terms (because they are di-
agonal in this basis). Thus one can transform each particle
into position space separately (requiring a small number
of quantum logic Operations), perform the time evolution
corresponding to the coulomb interaction, and then trans-
form back. Unfortunately, a position space representation
will require many more qubits. A fairly conservative es-
timate is that 30 qubits per particle (10 per dimension,
for a real space grid of 1024xl024x1024 per particle) will
more than suffice. Because these 30 qubits are required
only temporarily for the 2 particles whose interaction we
are considering at any particular stage in the algorithm,
the new efficient algorithm requires a total of 2 x 30 qubits
(for the interacting particles), an additional 3 x 10 qubits
(for the remaining particles), and the same 10 qubits for
the FFT and work space. It thus appears that in order
to realistically perform an “interesting7’ calculation using
the algorithms described previously, one will need a quan-
tum computer with approximately 100 qubits. Of course,
the possibility remains that an efficient algorithm for im-
plementing the coulomb interaction could be invented that
does not require additional working space.

D. Conclusion

In summary, I have explicitly demonstrated how a uni-
versal quantum computer can be used to efficiently simu-
late systems consisting of many Fermions. Depending on
the particular problem, it may be preferable to employ sec-
ond quantized notation (requiring m qubits) or first quan-
tized notation (requiring nlogm qubits). An O(n2) al-
gorithm for creating an antisymmetrized superposition of
states has been described. This chapter also provided de-
tailed algorithms which will simulate the Hubbard model,
requiring O(n2) quantum logic operations in first quantized
form, and O(m2) operations in second. The former algo-
rithm employs a scheme for accommodating nearly diago-
nal Hamiltonians that might be applied to a wider range
of problems.

Finally, this chapter demonstrated a new quantum al-
gorithm which can be used to find eigenvectors and eigen-
values of a Hamiltonian operator. The algorithm provides
an exponential speed increase when compared to the best
known classical techniques. Problems from atomic physics
may be the best place to perform the first real calcula-
tions, both because accurate experimental data is available
to verify the resulting calculations, and because the param-
eters involved appear to be within the foreseeable range of
small quantum computers. I have estimated that 50 - 100
qubits would be sufficient to perform “interesting” calcu-
lations that are classically intractable.

IV. INTEGRALS AND STOCHASTIC PROCESSES
34Summary. This chapter will discuss quantum algo-

rithms that calculate numerical integrals and various char-

34This chapter is based upon work [5] which took place while the
author was visiting NASA-JPL and which will be published sepa-
rately.

acteristics of stochastic processes, and describe how one
may apply either quantum counting or Grover’s mean es-
timation algorithm to solve these problems. Both of these
techniques obtain an exponential speed increase in com-
parison to the fastest known classical deterministic algo-
rithms and a quadratic speed increase in comparison to
classical Monte Carlo (probabilistic) methods. I derive a
simpler and slightly faster version of Grover’s mean algo-
rithm, show how to apply quantum counting to the prob-
lem, develop some variations of these algorithms, and show
how both (apparently distinct) approaches can be under-
stood from the same unified framework. Finally, I’ll discuss
how the exponential speed increase appears to (but does
not) violate results obtained via the method of polynomi-
als, from which it is known that a bounded-error quan-
tum algorithm for computing a total function can be only
polynomially more efficient than the fastest deterministic
classical algorithm.

A. Introduction

Although quantum algorithms have been discovered that
can solve many problems faster than the best known clas-
sical algorithms, there is a general sense - due, perhaps,
to the enormous technical challenges that must be over-
come before a useful quantum computer can ever be built
- that more applications must be found in order to justify
attempts to construct a quantum computing device.

In this chapter I suggest one possible application of a
quantum computer, namely, computing the values of inte-
grals. This problem can be solved in a fairly straightfor-
ward manner via either quantum counting[25], or Grover’s
mean estimation algorithm[57]. Although these general al-
gorithms are not new, this application may be the most
useful one described to date. (Because N operations are
required to retrieve N values from a classical database,
the mean finding algorithm affords no speed-up when ap-
plied to a preexisting data set. Indeed, even the original
database search algorithm has only limited utility, because
it can only be used to search a function space. It is not
clear to how many real-life problems it could be applied

I also suggest that a quantum computer may be used to
determine various characteristics of stochastic processes.
Frequently, such processes are used to generation distribu-
tion functions, and one wishes to know the mean, variance,
and higher moments. One can apply quantum counting
and mean estimation to obtain super-classical speedups for
these problems as well.

On a quantum computer, one can find the value of a d-
dimensional integral in 0 (1 / ~) operations, where E is the
desired accuracy. It follows from the results of Nayak and
Wu [76] that this is in fact a lower bound. Classically,
one requires 0 (l / c 2) operations to achieve the same accu-
racy using probabilistic methods, and requires O(l/&) -
exponentially more - operations to achieve the same ac-
curacy deterministically. (More precisely, it is polynomial
in the accuracy and exponential in the number of dimen-
sions.) Since real computers and all classical devices are

~031) .

b 23

in fact deterministic, this exponential speed increase is by
no means a red herring. Indeed, there is a popular miscon-
ception that real computers can perform probabilistic algo-
rithms with impunity by employing pseudo-random num-
ber generators. Of course, pseudo-random numbers are not
truly random at all - and one must in fact be careful about
treating them as such. For example, in 1992 Ferrenberg et
al. found bugs in a supposedly good pseudo-random num-
ber generator when a numerical simulation of an Ising spin
system failed due to hidden correlations in the “random”
numbers[49]. The moral here is that one cannot rely upon
a classical computing device to properly execute a proba-
bilistic algorithm. In some sense, one could argue that the
quantum algorithm for evaluating integrals provides an ex-
ponential speed increase.

B. Statement of the problem and classical algorithms
Without loss of generality, one may consider integrals of

a real-valued d-dimensional function g(zl,x2, ...zj) defined
for zi in the range [O, 11 and where g(z1, x2, ... z d) E [0,1],
for all d u e s of x i . Thus one seeks to calculate

I = 1’ 1’ ... 1’ 9 (5 1 , 2 2 , ... Zd)dZldZ2 ... dZd (55)

In the discussion that follows, g will be approximated
with a real-valued d-dimensional function f (a 1 , a2, ... ad)
defined over integral values ai in the range [l, MI and where

Thus, we wish to find the sum

, M M M

Note that the sum S is identical to the average of f over
all ai. The accuracy with which the sum S approaches the
integral I is obviously determined by the density of points
M in each variable and the shape of the particular function.
However35, in what follows, our sole concern will be with
approximating the sum S.

A sum of this form can also be used to determine prop
erties of a stochastic process. A stochastic process may
be described by a sequence of values, ~ 1 , 2 0 2 , ..., W N , where
each value wi is chosen randomly from a distribution which
may depend on some (or all) wj for j < i. For example,
a simple random walk would be described by a sequence
for which each wi is either (wi-1 + 1) or (wi-1 - 1) with
equal probability. Often, one is interested in a property
of such a sequence that can be represented as a function
w(w1, w2, ..., W N) . (In many cases, the function w may de-
pend only upon the final value w ~) . One wishes to de-
termine the mean, variance, skewness, and possibly higher

35Because the computational complexity of the quantum algorithms
(and also the classical Monte Carlo algorithms, for that matter) de-
pend only logarithmically on M , this approximation is not a limiting
factor (as long as the function is not pathological).

moments of the function w over the space of all possible se-
quences. This problem is easily transformed into the form
(55) through a change of variables: write each wi as a func-
tion wi(ri, ~ 1 , 2 0 2 , ..., wi-l) , where ri is a random variable
in the range [0,1]. Then one can write w as a function
w(rl,r2, ..., T N) of the independent random variables ri ,
scale the output so that it fits within the desired range,
and obtain a function in the form g above. The mean
value of the stochastic process is then simply the integral
(55). Once again, the integral is represented as a discrete
sum. (For some stochastic processes, the problem may in
fact be discrete from the beginning). Thus the problem
again reduces to finding the sum S in (57).

One can find higher moments of a stochastic process by
simply applying the above approach to a calculation of the
mean of w2, w3, etc. This method can of course also be
applied to calculate moments of any distribution function
(even if it is not the result of a stochastic process) as long
as it can be represented in closed form.

It should be intuitively obvious that without any knowl-
edge of the function f , one requires classically O (M d) oper-
ations to evaluate the sum. More precisely, if one views f as
an oracle (or “black-box”), then one requires at least M d / 2
queries to determine S to within k f . (This is because it is
possible that the remaining M d / 2 unqueried function val-
ues may be either all 0’s or all l’s, one of which will always
shift the mean by at least f) . It follows that an ordinary
classical Turing machine requires exponentially many op-
erations (as a function of d) to determine S with accuracy
E for any E < a.

However, if one is allowed to employ a probabilistic algo-
rithm, then one can randomly sample values of the function
f for various a l , a2, ... ad; as long as the values of ai are cho-
sen randomly (and provided that you are not exceedingly
unlucky), it is possible to quickly approximate S to any de-
sired precision. Indeed, it is a straightforward consequence
of the central limit theorem that one can determine S with
accuracy E (with bounded probability) using only 0 (l / c 2)
operations. Note that the number of trials does not depend
at all upon the size of the function’s domain - as it did in
the deterministic case - but only on the desired accuracy.
This is in fact how Monte Carlo integrals are computed,
and is essentially the only practical way to calculate inte-
grals of functions with high dimensionality. (It is also why
one need not be concerned with the approximation of the
integral I with the sum S - one can make M essentially
as large as one desires, paying only a logarithmic cost in
computational complexity). Unfortunately, Monte Carlo
integrals on classical devices require the use of a pseudo-
random number generator, and as mentioned previously,
there is no guarantee that one will obtain “good random
numbers. One obvious way to solve this dilemma would
be to use a simple quantum event to produce a string of
truly random numbers; but once one introduces quantum
mechanics into the problem, one can find an even more
effective solution.

1
24

C. Review of Grover searching
Both of the quantum algorithms discussed in this chap-

ter require a generalized version of Grover searching. The
treatment below follows that of Grover [57]; similar ideas
have also been described by Brassard et. al. [25] and vari-
ous others.

All quantum algorithms consist of unitary operations a p
plied in series. Any sequence of unitary operations can be
viewed as a single unitary operator. Consider a particular
unitary operator U which has amplitude Ut, between a
starting state Is) and a target state It). If the computer is
initially in the state Is), then after one application of U
the computer.wil1 be found in the state It) with amplitude
Ut,, and if the state of the computer is measured in the
canonical basis, the probability of obtaining the state It)
will therefore be IUts12. We seek to amplify the amplitude
of the state It). (Increasing the amplitude of this state in-
creases the chances that it will be found upon measurement
and thereby allows for fast searching).

Amplitude amplification in it's simplest form requires
the inversion operator Iz which inverts the phase of the
state 1.). We compose the unitary operators I and U t o
form the unitary operator G in the following way:.

G = -IsU-'ItU (58)

It can be easily verified that the operator G leaves invariant
the subspace spanned by Is) and U " l t) . In particular, one
finds that

(59)

which is approximately a rotation by 2 lUt.,1 radians. It fol-
lows that by applying 0(1/ IUtsl) iterations, one can obtain
the state U"It) with near certainty.

The original fast searching algorithm [55] [56] applies the
above steps with U = W , where W is the Walsh-Hadamard
transform - that is, a 1r/2 rotation of each qubit. If the
initial state Is) = (00 ... 0), then [Utsi = lWtsl = l / f l
for all possible target states It). The unitary operation
It selectively inverts the phase of the actual target state
It) for which we are searching. After one application of
W, the probability of measuring It) would be only h, the
same as one would obtain classically by guessing. However,
it follows immediately from the above that the amplitude
It) can be amplified to nearly 1 by applying only O(@)
operations.

D. Integrals via amplitude amplification
To evaluate the sum S in (57), one can use the mean

estimation algorithm described by Grover in [57]. I pro-
vide a simpler version of this algorithm (that is also faster,
because it requires about half as many quantum logic op-
erations). The algorithm works by refining a series of ap-
proximations. One can obtain an intuitive understanding

of the approach by employing an analogy to classical coin-
flipping. Consider a coin, which, when tossed, comes up
heads with probability p = S . By the central limit theo-
rem, one can determine S with accuracy e using 0(1/ e 2)
trials. Let us choose E = 0.1 so that after some (fixed) num-
ber of trials N we have determined (with bounded proba-
bility) the first digit of p . 36 As a concrete example, let
S = 0.7468332: the first set of trials would then reveal S to
be approximately 0.7. Call this first estimate El. Imagine
now that we are given a second coin, which, when tossed,
comes up heads with probability p 2 = w. Just as with
the first coin, tossing the coin 0(1/ e 2) times determines
p 2 with accuracy E . Choosing the same E and number of tri-
als N as before, we obtain (with bounded probability) the
first digit of p 2 . But this is the second digit of S, and thus
the current estimate is now E 2 = 0.74. We then undergo a
third iteration in which p 3 = - in order to determine
the third digit of S. Continued iterations of this process,
with more and more refined "coins", allow one to deter-
mine S with arbitrary accuracy, each iteration requiring
the same amount of effort to reveal an extra digit. More
precisely, one obtains an accuracy E" using only O(n/ E')

coin tosses, or, stated differently, an accuracy with logA
coins and a fixed number of tosses per coin. Of course, this
classical algorithm would not work in practice, because it
relies upon being given the requisite series of coins.

The quantum algorithm works in a similar way. The
final complexity of the algorithm will not be limited by the
number of trials, but by the fact that 0(1/ E) quantum logic
operations are required to "generate" the final coin (that
reveals pi to accuracy E). More specifically, one generates a
series of probabilities p k and approximations E k as follows:

I shall now describe a quantum algorithm for estimating
p k to a given accuracy E . Define = f - E k - 1 . Recall
that

36Actually, this is not precisely true. If the value of p is very close
to an integral mulitple of 0.1, then one does not have confidence
regarding the lirst digit, even though one has accuracy 0.1. Hence the
estimate used in the second iteration should actually be the estimate
obtained minus one half the error. However, this detail does not effect
the basic principle of the algorithm.

h 25

M-1

Consider a quantum computer with d log, M + 1 qubits.
Label the states Ir)lal,a2, ... ad) where the first qubit T is
a work qubit and the remaining qubits indicate a value
in the domain of f . The computer is placed initially in
the zero state: (0) lOO 0) . We begin by applying a Walsh-
Hadamard transform to the function qubits in order to ob-
tain an equal superposition of all possible values for the
ai :

1 "l

a al,az, ... ad=O
191 >= - I O) b l 7 a27 ---ad) (67)

the algorithm requires several iterations. Initially, pk may
be any value between 0 and 1, and hence N can be at
most 1. (That is, one cannot use amplitude amplification
at all). As the estimates E k - 1 become more accurate, then
the value of Pk becomes correspondingly smaller, and one
can choose larger and larger N .

Each estimate pk is determined with a fixed number of
trials, and since the estimates become exponentially more
accurate with each E k , the total number of trials is only
a logarithmic function of the desired accuracy. Hence, the
computational complexity is determined by the amplitude
amplification. Within a polylogarithmic factor, the entire
cost occurs on the last iteration (because each iteration
takes exponentially more time). The computational com-
plexity of the entire algorithm is therefore the same as the
amplitude amplification of the last iteration: 0(1/ E*) op-
erations are required, where E* is the desired accuracy.

It is interesting to note that, as with the classical Monte
Carlo method, the quantum algorithm depends only upon
the desired accuracy: the size of the function's domain
(M ~) is irrelevant.

Next, rotate the first qubit by an amount E. The state E- Integrals quantum counting
is then There is another algorithm which can be used to evaluate

the sum S in (57), inspired by the idea of quantum count-

real-valued function f(a1, u2, ... a d) into a boolean valued

extra parameter q. The parameter takes on integral values
in the range [l,Q] where Q is determined by the desired
accuracy. Define

p 2 >= ing [25]. To use this method, one must first convert the

A7 al,a2 5' ,... ad=0 (41 - K(a17 a27 *-.ad)210) function. This can be accomplished via the addition of an

+z(al,a2, *.*ad)/l)

transform used in the first step. It is easy to see that
the amplitude of the state 11)lOO ... 0) will then be pk
(because each state Il)lal, a2, ... ad) contributes amplitude
1- JMafk(al,a2, ... ad) to the state 11)lOO ... 0)). An estimate
for p k can therefore be obtained by making measurements
of the state of the system in repeated trials, and counting
the frequency of the result 11)lOO ... 0). To obtain an accu-
racy E requires O(1/c2) measurements.

However, one can use amplitude amplification to increase
the accuracy of the estimate. The steps described above
can be viewed as a single unitary operation U that has
amplitude [Utsl between the starting state Is) = l0)lOO ... 0)
and the target state It) = 11)lOO ... 0). It follows that one can
use amplitude amplification to increase the probability of
measuring the state I l) l O O ... 0) . By performing only O(N)
operations, one can increase the amplitude of It) to N *pk.
With the same 0(l/e2) trials, one thus determines p k with
accuracy E* = E/N. By fixing E and choosing a large N , one
performs only 0 (1 / ~ *) operations to find Pk with accuracy
E * .

Of course, there is a limit to the size of N if we want the
amplitude of It) to still be approximately N * Pk. (Alter-
natively, the size of N is limited by the requirement that
N * p k remains a valid probability amplitude). This is why

In other words, for a given a l , a2, ... ad,the fraction of the
Q values for which b (q , a2, ... ad, q) = 1 is the best ap-
proximation to f(a1, a2, ... ad). It follows that the average
value of b is identical to the average value of f . How-
ever, since b is a boolean-valued function, one can estimate
the average value of b via approximate counting. That
is, S = (b) = &, where T is the number of solutions
b(al,a2, ... ad,q) = 1. To count the number of solutions T ,

recall that during the amplitude amplification process, the
state of the system rotates within the subspace spanned
by Is) and U"lt) at a rate which is proportional to lUtsl.
Moreover, recall that by using the Walsh-Hadamard trans-
form for U (as in the Grover search algorithm), the magni-
tude of Ut, is exactly lUtsl = lWtsl = l / f i for any given
target state 1 2) . But if the target state It) = li), then

the amplitude of lUts/ = T/O. Hence the amplitudes of
the states Is) and U-'lt) will oscillate with a frequency
that varies directly with T . It is therefore a simple matter
to create a superposition

iEb(i)=l

c
26

and determine the value of T by performing a fast Fourier
transform on the first register. The accuracy 1/A will de-
pend linearly upon the number of points used in the FFT,
as will the number of quantum logic operations (because
it takes 0(1) operations to perform G, one requires O(A)
operations to create the state 19 > above). It follows that
one can determine the value of the integral f to accuracy E

with 0(1/ E) operations, as in the previous algorithm. Also
as above, one finds that the number of operations does not
depend upon the size of the domain of f , but only upon
the desired accuracy.

F. Discussion

At first, it may appear surprising that these two very
different quantum algorithms should both require 0(1/ E)

operations. However, by exploring some variations of these
algorithms, one finds that, while not identical, they are
both quite similar.

First, note that there is a trivial variation of quantum
counting, which is simply to measure the state of the sys-
tem in repeated trials, and count the number of times one
obtains the target state (or more precisely, a state for which
b(a1, a2, ... a d , q) = 1.) That is, we determine the fraction

= (b) = S through random sampling. This technique
is directly analogous to the way, in Grover mean estima-
tion, one finds the probability pl through repeated trials
(counting the number of times we measure the target state
11)lOO ... 0)). In both cases, 0(1/ E’) operations would be re-
quired to obtain an accuracy E . The difference is that using
the Grover method, one can subtract the most recent esti-
mate from each term in the sum (to obtain the function%),
and then perform amplitude amplification to increase the
probability of obtaining the target state. By amplifylng
this difference, the precision of the algorithm is limited by
the linear amplitude amplification process rather than by
the quadratic sampling process. In the case of quantum
counting, one can also apply the amplitude amplification
process to the target state (indeed, this is exactly what the
quantum counting algorithm does). However, one cannot
subtract the most recent estimate from each term in the
sum: specifically, for a given a l , a2, . . .ad , there can be no
less than zero values of q for which b(a1, a2, ... a d , q) = 1.
In the Grover method, individual terms in the sum may be
negative, even though the sum of all the terms is always
positive. The counting method does not allow this pos-
sibility. It is therefore impossible to use the technique of
iterated, refined estimates to increase the precision of the
approximation.

The relationship can be viewed from another perspec-
tive by considering a variation of Grover’s method. As
presented earlier, the technique depends upon measuring
the amplitude of the target state 11)lOO ... 0). This is accom-
plished through repeated measurements. However, one can
also determine this amplitude with a quantum FFT. Re-
calling once again that during the amplitude amplification
process the state of the system rotates within the subspace
spanned by Is) and U”(t), at a rate which is proportional
to [Ut, 1 (which in this case is equal to p k) , we see that one

could also use an FFT to determine (and thereforepk). -
As in the case of quantum counting, one requires 0(1/ E)

operations to obtain the result with accuracy E . Moreover,
because the FFT measures the frequency of the rotation,
one does not need to perform the iterated estimates (which
previously ensured that the initial amplitude lUtsl was suf-
ficiently small that it would in fact be amplified throughout
the entire process).

The situation is in many ways similar to the relationship
between Shor’s algorithm and Kitaev’s algorithm[61]. In
the Kitaev algorithm, one estim_ates the phase of an eigen-
value 4 of a unitary operator U . The number of opera-
tions required to estimate 4 grows polynomially with the
desired precisioc, bgt Kjtaev obtains exponential precision
by considering U 2 , U4, Us,etc. This process is analogous to
the refined estimates used in the Grover method. In [37],
Cleve et. al. describe how to modify Kitaev’s algorithm so
that it uses an FFT to estimate the phase. The resulting
algorithm is then identical to Shor’s.

One sees, therefore, that the two apparently distinct al-
gorithms are in fact both very closely related. In both
cases, one performs a sequence of unitary operations that
generate an operator with amplitude lUtsl to make a tran-
sition from the 10) state to the target state It), where the
value of /Ut, I depends directly on the sum S. In both
cases, one may use a quantum FFT to estimate the value
of lUtsl and approximate S with accuracy E in 0(1/ E) op-
erations. In both cases, one may estimate the value of [Ut,[
directly through repeated measurements and then approx-
imate S with accuracy E in 0(1/ e 2) operations. The only
difference is that in Grover’s method, the particular form
of the operator U allows one to consider negative values%
- which in turn allows one to use the process of iterated,
refined estimates and thus to obtain linear precision di-
rectly with repeated measurements instead of with the fast
Fourier transform.

G. Conclusion

In conclusion: I have proposed two new applications for
quantum computation: evaluating integrals and calculat-
ing descriptive statistics of stochastic processes. Whereas
O (M d) operations are required on a classical determinis-
tic Turing machine, and 0(1/ c 2) operations are required
with a classical probabilistic algorithm, one can obtain the
same accuracy on a quantum computer with only 0(1/ E)

quantum Operations, using two different algorithms. I have
provided a simpler (and slightly more efficient) version of
Grover’s mean-finding algorithm, demonstrated how quan-
tum counting can be applied to mean estimation, derived
some variations of both algorithms, and shown how the two
are very closely related.

It is interesting to consider these results in light of the
work by Beak et. al. [8], where it is proven (using the
method of polynomials) that a bounded-error quantum al-
gorithm for computing a total function can be only polyno-
mially more efficient than the fastest deterministic classical
algorithm. A boolean function b(a1, a2, ... a d , q) such as the
one described in Section 5 can be described as a sequence

* of Mdq boolean values; the average of b is a function of
those Mdq boolean values, and it is a total function, since
it is well-defined for all possible input functions b. In order
to phrase mean-estimation as a decision problem, we can
ask: “Is the average value of b within the range [E- E, E+
E] ?” (for some chosen E and E) . Naively, it appears that
the results of [8] would imply that this problem cannot be
speed up more than polynomially on a quantum computer
(vs. a classical deterministic computer) - whereas I have
previously claimed an exponential separation. It appears
that there is a c~n t rad ic t ion .~~

The (in fact quite simple) resolution of this problem is
that the decision question posed above does not quite cor-
respond to mean-estimation. According to the question
given, a function with mean just slightly (infinitesimally)
more than E+ E does not have a mean that is approxi-
mately E , whereas a function that has mean exactly E+ E

does. Of course, our quantum algorithms cannot reliably
differentiate between these two cases in polynomial time
any better than the classical deterministic algorithms can.
The decision question that one can associate with mean-
estimation would be a probabilistic one; the answer should
be sometimes yes and sometimes no with a probability that
depends (perhaps as a gaussian function) upon the distance
the true mean is from the estimate E. Such a question is
not a function (although it can be viewed as the average
value of a weighted ensemble of functions). Thus, the re-
sults obtained in [8] do not apply to our problem, and there
is no contradiction.

In concluding therefore the author would like to make
the following point. It is easy for results such as those in
[8] to cause one to be disheartened about the prospects
of quantum computing. However, sometimes the “real”
problems we wish to solve have special properties that can
make them easier than the general cases. Calculating ap-
proximate integrals is one such example - and there are
likely others waiting to be discovered.

v. NONLINEAR QUANTUM MECHANICS AND
NP-COMPLETE PROBLEMS

38Summary. This chapter will demonstrate that non-
linear quantum mechanics allows for the polynomial time
solution of NP-complete and #P problems. If quantum
states exhibit small nonlinearities during time evolution,
then by exploiting nonlinear quantum logic gates one can
design quantum algorithms that solve NP-complete and
#P oracle problems. Using the Weinberg model as a sim-
ple example, the explicit construction of these gates will
be derived from the underlying physics. Nonlinear quan-
tum algorithms are also presented using Polchinski type
nonlinearities which do not allow for superluminal commu-
nication.

37Actually, this issue applies equally to the exponential separation
between the classical deterministic and probabilistic algorithms.

38The work described in this chapter is based upon [4] and (21.

A . Introduction
It has been suggested [97] [98][50][65] [lo] that under

some circumstances the superposition principle of quantum
mechanics might be violated - that is, that the time evo-
lution of quantum systems might be (slightly) nonlinear.
While there are reasons to believe that a theory of quan-
tum gravity may involve such nonlinear time evolution,
nonlinear quantum mechanics is at present hypothetical:
experiments confirm the linearity of quantum mechanics to
a high degree of accuracy[71][95][30] [24]. (There are, how-
ever, some questions about the interpretation of these tests
due to the effects of nonlinear quantum mechanics[81]).
Nonlinear quantum theories have also had theoretical dif-
ficulties[79] [81] [54] - including problems with superluminal
communication - but there are nonlinear theories that do
not appear to have these issues[81] .The validity of nonlinear
quantum mechanics is an important question that can only
be settled by further experiments and the requirements of
theoretical self-consistency. However, this chapter is con-
cerned not with the validity of a particular nonlinear the-
ory, but instead with the implications of nonlinear quantum
mechanics on the theory of computation, should quantum
mechanics in fact turn out to be nonlinear at some level.
In particular, I’ll show that it is possible to exploit nonlin-
ear time evolution so that the classes of problems NP and
#P (including oracle problems) may be solved in polyno-
mial time. An experimental question - that is, the exact
linearity of quantum mechanics - could thereby determine
the answer to what may have previously appeared to be
a purely mathematical one. This chapter therefore estab-
lishes a new link between physical law and the theoretical
power of computing machines, and demonstrates that the
connection is much more subtle than one might suppose.
Moreover, because almost all hard computational problems
that occur naturally (in computer science, physics, engi-
neering, etc.) are contained within the class of #P oracle
problems, this result could (someday) be practically impor-
tant as well.

As explained in Chapter 1, the class NP is (loosely de-
fined) the set of problems for which it is possible to ver-
ify a potential solution in polynomial time. These include
all problems in the class P (those that can be solved in
polynomial time) as well as the NP-complete problems,
e.g. , traveling salesman, satisfiability, and subgraph iso-
morphism, for which no known polynomial time algorithms
exist. One natural way to approach these problems on a
quantum computer is to create a superposition of every
possible potential solution, and then try to determine if
one of those potential solutions is in fact a true solution.
In some sense, this technique nicely mimics the theoretical
behavior of a non-deterministic Turing machine. In order
to both simplify and generalize the result, it is convenient
to replace the actual NP problem with an oracle problem,
stated as follows: consider an oracle (or “black box”) which
calculates a function that maps n bits into a single bit; i.e.,
it takes an input between 0 and 2n - 1 and returns either 0
or 1. One needs to determine if there exists an input value
x for which f (s) = 1. It is easy to see that a polynomial

time algorithm to solve this problem can be used to solve
all problems in the class NP. (Note, however, that the con-
verse is not necessarily true - the NP complete problems
contain structure, whereas the function defined above is
completely arbitrary. Thus this oracle problem is in fact
a harder problem than those in NP, because it clearly re-
quires exponential time on a classical Turing machine.) For
simplicity we will at first restrict ourselves to the case where
there is at most one value x for which f (r) = 1.

B. First method
One might attempt to solve this oracle problem on an

ordinary quantum computer using the following technique.
First, create a superposition of all the input states:

. 2“-1

Next, use the oracle to calculate f (i) for each li) in par-
allel:

Although the final qubit in some sense “knows” the solution
to the problem, a measurement of this qubit will yield 11)
with either zero probability if there is no solution or an
exponentially small probability if there is a solution. It
is therefore necessary to enhance the amplitude of the 11)
component of the superposition by an exponentially large
factor, in order to distinguish the two cases. One idea is
to try to increase the number of states with a 11) rather
than increase the amplitude of the particular state li) for
which f (i) = 1. Imagine comparing the states li) in pairs,
according to the last bit of li). Looking at just the last bit
of li) and the final qubit f (i) , we see one of the following
states:

(a) 100) + 111)
(b) 101) + 110) (73)
(4 100) + 110)

The last case occurs most frequently. What we’d like to
do is map these states into new states using the following
transformation:

(a) 100) + 111) - 101) + 111)
(b) 101) + 110) - 101) + 111) (74)
(c) 100) + 110) - 100) + 110)

This transformation is like an AND gate between branches
of the wavefunction - it ignores the first qubit and places
the second qubit in the state 11) if and only if either of the
original components had the state 11) for the second qubit.
Performing this transformation on the superposition of all
li) will leave every state unaffected except the state which
neighbors the solution lz). This state will then pick up

a 11) in place of the 10) which it originally had. If we
then compare states in pairs according to the second bit
of li), the number of states with a 11) for the final qubit
will double again. Repeated application of this process
would then leave the final qubit unentangled with the first
n qubits: it would be either in the pure state 10) if there
are no solutions to the problem, or the pure state 11) if
there had existed some state 1.) for which f (r) = 1. A
measurement of this qubit thereby reveals the answer to
the problem.

Of course, this transformation cannot be accomplished
using an ordinary quantum computer, because it is nonlin-
ear. That this is the case can be easily seen by the fact that
in cases (a) and (c) the initial states are non-orthogonal,
but the final states are orthogonal. Hence the desired trans-
formation cannot possibly be linear. One is tempted to try
to patch this problem in a variety of ways. One possi-
bility is to imbed this transformation in a larger Hilbert
space and hope that a projective subspace might reduce to
the desired nonlinear transformation. Unfortunately, this
approach cannot succeed. The reason is that different ele-
ments of the superposition need to interfere with each other
in later stages of the algorithm. If the “linearized” ver-
sion of the transformation results in extraneous “garbage”
qubits, these will prevent the states from interfering with
each other in future iterations. Equivalently, one might
hope that the non-unitary evolution associated with the
measurement process might suffice to accomplish the nec-
essary transformation, but this will fail for the same reason.
One can also try to hide the extraneous information in the
phases of the states. Although this appears promising at
first, more careful analysis reveals essentially the same dif-
f i ~ u l t i e s . ~ ~

One sees, therefore, that the potential application of a
nonlinear quantum logic gate arises naturally from a fairly
straightforward approach to the N P oracle problem. From
an intuitive perspective, however, it is not exactly clear
why it is that nonlinearity is important, beyond the fact
that the gate which we desire for our algorithm does not
happen to be linear. One can get a better feeling for this
from a slightly different perspective.

Consider the shortest-path version of the traveling sales-
man problem, and a classical algorithm that finds “pretty
good” solutions, such as simulated annealing. Implement
this algorithm on a quantum computer, and initialize the

**

390ne can also imagine approaching the problem with phases from
the very beginning, thereby avoiding the need for the nonlinear gate.
After calculating f(i), multiply the phase of the solution state by -1
and then reverse the computation of f(i). The computer would then
be in an equal superposition of all li>, with the state Ix>for which
f(x)=l having opposite phase. Pairs of states containing two li>of
opposite phase are orthogonal to those for which both li>are of the
same phase, so it is possible t o reverse the phase of the pair, thereby
transfering the minus sign from the solution Jx>to its partner state.
Repeating the process which created the phase in the first place would
then leave two states with negative phase. By iterating through each
bit of li>(as in the previous algorithm), one can continue the process
until a substantial fraction of the states have negative phase. This
situation can be easily detected. Unfortunately, each iteration takes
twice as long as the previous one, so the algorithm described in this
footnote requires exponential time.

a 29

. quantum computer in a state which as before is a super-
position of all possible inputs. After the algorithm has
finished, the result will be a quantum computer that ex-
ists in a superposition of all the various local minima that
are found by searching from every possible initial state. A
measurement would then reveal any one of these local min-
ima, but most likely not the shortest path. Thus, what one
would like to do before the measurement is to compare the
various states with each other and shift the amplitude into
the states representing shorter paths. Put differently, we
would like an algorithm which acts in a space that is re-
stricted to only those quantum states which already have
non-zero amplitude. Unfortunately, the linear transforma-
tions allowed by ordinary quantum mechanics have no way
for a given state (or more precisely, component of a super-
position) to “sense” the amplitude of other states. This is
the aspect of nonlinear quantum mechanics which allows
for the solution of NP-complete problems.

Returning to the algorithm described above, it is clear
that if one could obtain the necessary nonlinear transfor-
mation, one could find the answer to an NP-complete prob-
lem in polynomial (in fact, linear) time, and using only a
single evaluation of the oracle. It may be objected that
the nonlinear operator described above appears arbitrary
and unnatural: indeed, it was selected exactly so as to be
able to solve the stated problem. However, the apparently
arbitrary operation can be built using ordinary unitary op-
erations and much simpler and more ‘natural’ single qubit
nonlinear operators (that is, to the extent that any non-
linear operation in quantum mechanics can be considered
‘natural’). One possible technique for generating the trans-
formation would be to use the following steps: first, act on
the two qubits with the unitary operator

1 0 0 1 q : J z 0 1 - 1 : : !,I (75)

This transforms the states above as follows:

Next, operate on the second qubit with a simple one qubit
nonlinear gate 2- that maps both I0)and 1l)to the state
IO). Thus

(77)

The third final state is unknown because we have not
bothered to specify how the non-linear gate acts on the
state loo>+ 101>- [lo>+ Ill>. This omission thereby al-
lows for flexibility in choosing the gate ii-. Whatever the
state IA>may be, we can perform a unitary operation that
will transform the first qubit into the pure state 1O)while
leaving the state 100>in place. The computer is then in
one of the following states

(a) l0)lO)
(b) l0)lO) (78)
(4 10)(40) + Yll))

A second non-linear gate E+ is now required that will
map the state z 10) + y 11) to the state 11) (for the partic-
ular values of x and y which result from the above steps
but not necessarily for arbitrary x and y), while leaving the
state 1O)unchanged. After this gate is applied, the trans-
formation resulting from the steps described so far is then:

The desired two qubit transformation is then easily ob-
tained with a NOT gate on the second qubit and a 7r/2
rotation on the first qubit.

Having thus shown how to generate the needed two qubit
gate, the question is now reduced to that of generating the
simpler single qubit gates ii- and ii+. If one considers the
state of a qubit as a point on the unit sphere, then all
unitary operations correspond to rotations of the sphere;
and while such rotations can place two state vectors in any
particular position on the sphere, they can never change
the angle between two state vectors. A nonlinear trans-
formation corresponds to a stretching of the sphere, which
will in general modify this angle. The desired gates E-
and ii+ are two particular examples of such operations.
Excepting perhaps certain pathological cases (e.g., discon-
tinuous transformations), it is evident that virtually any
nonlinear operator, when used repeatedly in combination
with ordinary unitary transformations (which can be used
to place the two state vectors in an arbitrary position on
the sphere), can be used to arbitrarily increase or decrease
the angle between two states, as needed to generate the
gates ii- and si+. An explicit method for generating these
gates using the Weinberg model will now be provided.

C. An explicit construction using the Weinberg model
In this section, an explicit construction of the necessary

nonlinear gates is provided using the Weinberg model of
nonlinear quantum mechanics. Although the Weinberg
model is probably not the most plausible nonlinear the-
ory proposed to date, it serves as a good example because
of its simplicity and generality, and because it is the most
well-known nonlinear theory-

30 b

In Weinberg’s model, the “Hamiltonian” is a real homo-
geneous non-bilinear function h(+, $*) of degree one, that
is[98]

and state vectors time-evolve according to the equation

Following Weinberg [98] , one can always perform a canoni-
cal homogeneous transformation such that a two-state sys-
tem (i.e., a qubit) can be described by a Hamiltonian func-
tion

where

a = - l+2I2
n

It is easy to verify his solution to the time dependent
nonlinear Schrodinger equation (81), which is

+ k (t) = cke -iwk(a)t (85)

where

q (a) = X(a) - aE’(a) (86)

w,(a) =X(,) + (1 - a)X’(a) (87)

For nonlinear X(a), one sees that the frequencies depend
on the magnitude of the initial amplitude in each basis
state. Intuitively, one can imagine a transformation on
the unit sphere which, instead of rotating the sphere at a
particular rate, twists the sphere in such a way so that each
point rotates at a rate which depends upon its angle 0 from
the axis (clearly, this transformation involves stretching of
the surface). One can exploit this stretching of the sphere
to build the gate 6- as follows:

Step 1. Perform a rotation on the first qubit by an angle
45 < 45O:

10) - COS(4)lO> - sin(4)ll) (88)
11) - sin(4)lO) + cos(4)ll) (89)

Step 2. Time-evolve the system according to the nonlin-
ear Hamiltonian h = &(a). Thus

the nonlinear Hamiltonian will cause the components to v
evolve at different frequencies. As long as these frequencies
are incommensurate, there is a time t at which a=y=6=1
and P=-1 (to within an accuracy E) . (Further, this time t
is a polynomial function of the desired accuracy E .) The
net result of these two steps is then

10) - COS(4)lO) + sin(4)ll) (92)
11) - sin(4)lO) + cos(4)ll) (93)

Step 3. Reverse the first step. Thus

10) - cos(24) 10) + sin(24) 11) (94)

11) - 11) (95)

Essentially, we have reduced the angle between the two
states by an amount 24. By suitable repetition of this pro-
cedure (that is, by choosing 4 appropriately for each itera-
tion), or simply by choosing 4 precisely in the first step, the
states IO>and Il>can be mapped to within E of the state
IO>, in an amount of time which is a polynomial function
of the desired accuracy. This is the desired behavior for the
nonlinear gate E - . The procedure can be modified slightly
to increase the angle between state vectors and produce the
desired behavior for the gate E+. With these two gates,
one can solve NP-complete problems using the Weinberg
model.

Note that this method is robust against small errors: the
algorithm does not require exponentially precise operations
at any stage.

Finally, the class #P contains problems in which you
must determine not only if there exists a solution, but the
exact number of solutions. It is easy to see that the #P
problems are much harder to solve than NP-complete prob-
lems. To solve the problems in the class #P, one replaces
the flag qubit with a string of log, n qubits and modifies the
algorithm slightly - so that it adds the number of solutions
in each iteration rather than performing what is effectively
a one bit AND. In this case, a measurement of the final
result reveals the exact number of solutions.

D. Second method
A different algorithm that solves the NP oracle problem

can be thought of as an extension of Grover’s data-base
search algorithm[55] to a nonlinear regime. Suppose that
it is possible to perform a nonlinear operation on a single
qubit that has the following property: somewhere on the
unit sphere there exists a line (of not exponentially small
extent) along which application of the operation causes
nearby points to move apart exponentially rapidly. One
can exploit this behavior to solve NP problems in the fol-
lowing manner. Begin with an ordinary quantum computer
(Le., one that can perform the usual quantum logic opera-
tions) and place it in an equal superposition of all possible
inputs. Then use the oracle (only once) to calculate f (i)
and obtain the state:

.I Now perform a 1r/2 rotation on each of the first n qubits.
Each state li > then maps into a superposition over all pos-
sible li >, with amplitude St&. In particular, each state
li>contributes +-&of its amplitude to the state 100 ... 0 >,
for a total contribution of amplitude & from each li >. At
least Q2" of these states correspond to a particular value of
f (i) = a, and thus the state 100 0,a > has amplitude at
least 112. A measurement on the first n qubits will there-
fore yield the state 100 ... 0 > with probability at least 1/4.
The system will then be in the state

(97)

where s is the number of solutions i for which f (i) = 1.
The last qubit now contains the necessary information; for
small s, however, a measurement of the last qubit will al-
most always return IO), yielding no information. We wish to
distinguish between the cases s=O and s>O. This is accom-
plished by repeatedly applying the nonlinear operation to
drive the states representing these two cases apart at an ex-
ponential rate: eventually, at a time determined by a poly-
nomial function of the number of qubits n, the number of
solutions s, and the rate of spreading, the two cases will be-
come macroscopically distinguishable. A measurement on
the last qubit will now reveal the solution. Of course, if
the angular extent of the nonlinear region is small, it may
be necessary to repeat the algorithm several times in order
to determine the solution with high probability. In gen-
eral, the algorithm will require O ((T / ~) ~) trials, where Q is
the angular extent of the nonlinear region. The oracle may
need to be called only once for q sufficiently large.

Problems in the class #P ask us to determine the ex-
act number of solutions s. This is approximately found
by counting the number of times that the nonlinear op-
erator was applied. To determine s exactly, one proceeds
with finer and finer estimates by rotating the final qubit
such that the current best estimate is centered in the non-
linear region; in this way, applying the nonlinear operator
separates states with s near this value so that they are dis-
tinguishable. With only a polynomial number of iterations,
one determines the value s exactly.

Unlike the first method described previously, the above
algorithm has one disadvantage in that it requires expo-
nential precision. However, it can be made robust against
noise by introducing a multiple qubit nonlinearity, as fol-
lows. Use the previous algorithm but calculate the value
f (i) a total of M times to obtain the state

2n - s S

2n 2n
1000 0) + - 1111 1)

By making M sufficiently large - a constant multiple of n
will suffice - the amplitude of the states with more ones
than zeros (such as 11101 ... 1)) caused by random noise will
be exponentially smaller then the amplitude caused by the
existence of a single solution for which f (i) = 1. Hence,
any nonlinear operator that rapidly increases the ampli-
tude of states with more ones than zeroes with respect to

31

the amplitude of states with more zeroes than ones will
suffice to distinguish reliably the cases s=O and s=1, as re-
quired. Moreover, a nonlinearity of this type satisfies the
Polchinski criteria [81] for nonlinear quantum mechanics
without superluminal communication. (A similar nonlin-
ear operator is described in more detail by Czachor in [36]
and was the inspiration for this approach).

E. Conclusion

In conclusion: it has been demonstrated that nonlinear
time evolution can in fact be exploited to allow a quantum
computer to solve NP-complete and #P problems in poly-
nomial time. It has been shown explicitly how to accom-
plish this exponential speed-up using the Weinberg model
of nonlinear quantum mechanics. A nonlinear quantum
algorithm has also been presented using Polchinski type
nonlinearities which are known not to support superlumi-
nal communication.

The author would like to emphasize that these results
are probably best viewed as new and further evidence that
the universe is exactly linear, rather than as blueprints for
the design of a machine if it were not. (Though it is cer-
tainly not obvious, a priori, that quantum mechanics need
be strictly linear - and the question can be fairly viewed
as an experimental one. Moreover, it is the mere existence
of a nonlinearity, no matter how small, which changes the
structure of the complexity classes.) Thus, the connection
between physics and computation is now made unavoid-
able: the underlying laws of physics strongly impact the
theoretical complexity of computational problems. And
while it does not seem likely that nonlinear time evolution
does exist in reality, the theoretical implications and prac-
tical applications that would result from a discovery to the
contrary may warrant further investigation into the matter.

REFERENCES
D.S. Abrarns and S. Lloyd, Phys. Rev. Lett. 79 (1997) 2586-
2589
D.S. Abrams and S. Lloyd, Phys. Rev. Lett. 81 (1998) 3992-
3995
D.S. Abrams and S. Lloyd, sub. to Phys. Rev. Lett., quant-
ph/9807070
D.S. Abrams and S. Lloyd, Proceedings of the 1st NASA In-
ternational Conference on Quantum Computing and Quantum
Communications (1998)
D.S. Abrams and C. P. Williams, preprint
A. Barenco et. al., Phys. Rev. A 52, 3457 (1995)
A. Barenco et. al, Phys. Rev. Lett. 74, 4083 (1995)
R. Beak, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, in
Proceedings of the 39th Annual Symposium on Foundations of
Computer Science (1998)
D. Beckman et. al, Phys. Rev. A 54, 1034 (1996)
0. Bertolami, Physics Letters A, 154, p. 225-9 (1991)
P. Benioff, J. Stat. Phys. 22, 563 (1980)
P. Benioff, Phys. Rev. Lett. 48, 1581 (1982)
P. Benioff, J. Stat. Phys. 29, 515 (1982)
P. Benioff, Ann. N.Y. Acad. Sci. 480, 475 (1986)
P. Benioff, Review of Quantum Computation, preprint
C.H. Bennet, IBM J. Res. Dev 17, p. 523-532 (1973)
C.H. Bennet, Int. J. Theor. Phys. 21, 905 (1982)
C.H. Bennet, SIAM J. Comput. 18, 766776 (1989)
C.H. Bennet, IBM J. Res. Dev. 32, p. 16-23 (1988)
C.H. Bennet et. al, SIAM J. Comput. 26: (5) 1510-1523 OCT
1997

32

[21] E. Berstein and U. Vazirani, Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, (ACM, New York,
1993), P. 11

[22] M. Biafore, Proceedings of the Workshop on Physics of Compu-
tation: PhvsComp '94, IEEE Computer Society, Los Alamitos, - .
CA, pp. 6,-68

54

- .

[23] B. Boghosian and W. Taylor, Phys. Rev. E. vol 57 (1998), p.

[24] J.J. Bollinger, D.J. Heinzen, W.M. Itano, S.L. Gilbert, D.J.

[25] G. Brassard, P. Hoyer, A. Tapp, quant-ph/9805082
[26] S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu,

[27] G. Burkard, D. Loss, D. P. DiVincenzo, Phys. Rev. B 59, p.

[28] A. R. Calderbank and P. W. Shor, Phys. Rev. A, Vol. 54, No.

[29] A. R. Calderbank, E. M Rains, P. W. Shor, and N. J . A. Sloane,

[30] T.E. Chupp and R.J. Hoare, Phys. Rev. Lett. 64, 2261 (1990)
[31] 3. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)
[32] S. A. Cook, Proc. 3rd Ann. ACM Symp. on Theory of Com-

puting, Association for Computing Machinery, N.Y., 151-158
(1971)

Wineland, Phys. Rev. Lett. 63, 1031 (1989)

and R. Schack, quant-ph/9811018

2070 (1999)

2, pp. 1098-1106, 1996

Phys. Rev. Lett. 78 (1997) 405-408

[33] D. Coppersmith, IBM Research Report RC 19642 (1994)
[34] D.G. Cory, A.F. Fahmy, and T. Havel, Proc. Nat. Acad. Sci.

(351 D.G. Cory, private communication
[36] M. Czachor, preprint (quant-ph/9802051)
[37] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. R. SOC.

[38] D.P. DiVincenzo, Science 270 255 (1995)
[39] D.P. DiVincenzo, Phys. Rev. A., 51, 1015-1021 (1995)
[40] D. Deutsch, Proc. R. SOC. London Ser. A 400, 97 (1985)
[41] D. Deutsch, Proc. R. SOC. London Ser. A 425, 73 (1989)
[42] D. Deutsch and R. Jozsa, Proc. R. SOC. Lond. A 439, 553 (1992)
[43] D. Deutsch et. al, Proc. R. SOC. Lond. Ser A 449, 669 (1995)
1441 A. Ekert and R. Jozsa, Reviews of Modern Physics 68 733

[45] E. Farhi, J . Goldstone, S. Gutmann, M. Sipser Phys. Rev.

[46] R.P. Feynman, Int. J. Theor. Phys. 21,467 (1982)
[47] R.P. Feynman, Optics News 11, p. 11-20; also in Foundations

[48] R.P. Feynman, Feynman Lectures on Computation, Perseus

[49] A. M. Ferrenberg and D. P. Landau, Phys. Rev. Lett. 69, 23

[SO] D. Fivel, Phys. Rev. A 56, p. 146-56 (1997)
[51] E. Fredkin and T. Toffoli, Int. 3. Theor Phys. 21, 219 (1982)
(521 M. Garey and D. Johnson, Computers and Intractability: A

Guide to the Thoery of NP-Completeness, W.H. Freeman and
Company (1979)

1531 N. A. Gershenfeld and I. Chuang, Science 275, 350-356 (1997)
[54] N. Gisin, Phys. Lett. A 113, p. 1 (1990)
[55] L.K. Grover, Proceedings of the Twenty-Eighth Annual ACM

Symposium on the Theory of Computing, p. 661, 212-19
[56] L.K. Grover, Phys. Rev. Lett. 79, 325-328 (1997)
[57] L.K. Grover, quant-ph/9711043
[58] W. R. Johnson, private communication
[59] B. E. Kane, Nature 393, 133 (1998)
[60] R. M. Karp, in Complexity of Computer Computations, e d . by

[61] A. Yu. Kitaev, quant-ph/9511026
[62] R. Landauer, IBM J. Res. Dev. 5, 183 (1961)
[63] Philos. Trans. Roy. SOC. London Ser A 353, 367 (1995)
[64] D. Lidar and 0. Biham, Phys. Rev. E vo1.56 (1997), p.3661
[65] B.G. Levy, Physics Today, 12 pp. 20 (1989)
[66] D. Loss and D.P. Divincenzo, Phys. Rev. A.
[67] S. Lloyd, Science 261, 1569 (1993)
[68] S. Lloyd, Science 273, 1073 (1996)
[69] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995)
[70] S. Lloyd, S. L. Braunstein, Phys.Rev.Lett. 82 (1999) 1784-1787
[71] P.K. Majumder et. al., Phys. Rev. Lett. 65, 2931 (1990)
[72] N. Margolus, Ann. N. Y. Acad. Sci. 480, pp. 487 (1986)
[73] N. Margolus, in Complexity, Entropy, and the Physics of Infor-

mation, Santa Fe Institute Studies in the Sciences of Complex-
ity, Vol VI11 (W.H. Zurek, ed.) Addison-Wesley, pp. 273-287

USA 94, 16341639 (1997)

Lond. A 454 (1998), pp. 339-354

(1996)

Lett. 81 (1998) 5442-5444

of Physics 16, 507-531 (1986)

Books (Addison-Wesley) 1996

(1992) ~~3382-3384

Miller and Thatcher, PLenum Press, N.Y., p. 85-103 (1972)

[74] N. Margolus, Physica, 10D, pp. 81-95 (1984).
[75] C. Monroe et. al, Phys. Rev. Lett. 75, 4714 (1995)
[76] A. Nayak and F. Wu., quant-ph/9804066
[77] K. Obermayer, W.G. Teich, G. Mahler, Phys. Rev. B 37, 8096

[78] G.M. Palma et. al, Proc. R. SOC. London ser. A 452,567 (1996)
[79] A. Peres, Phys. Rev. Lett. 63, 1114 (1989)
[80] T. Pellizzari, S.A. Gardiner, J.I. Cirac, P. Zoller, Physical Re-

(811 J. Polchinski, Phys. Rev. Lett. 66, pg. 397 (1991)
[82] J. Preskill, Proc. R. SOC. Lond. A 454, 385-410 (1998)
I831 J. Preskill, unpublished notes, available at

www.theory.caltech.edu/people/preskill/ph229/
[84] R. Rivest, A. Shamir, and L. Adleman (1978) Comm. ACM 21,

120-126
[85] B. Schumacher, Phys. Rev. A 51, 2738 (1995)
[86] P. Shor, in Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, edited by S. Goldwasser
(IEEE Computer Society, Los Alamitos, CA, 1994), p.124

[87] P. Shor, SIAM J. Computing 26 (1997) 1484
[88] D. Simon, Proceedings ofthe 35th Annual Symposium on Foun-

dations of Computer Science, edited by S. Goldwasser (IEEE
Computer Society, Los Alamitos, CA, 1994), p.116

[89] M. Sipser, Introduction to the Theory of Computation, PWS
Publishing Company (1997)

[go] T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74,4087 (1995)
[9l] A. Steane, Proc.Roy.Soc.Lond. A452 (1996) 2551
[92] Q. A. Turchette et. al, Phys. Rev. Lett. 75, 4710 (1995)
[93] A. Turing, Proc. Lond. Math. SOC. Ser. 2 42, 230-265 and 43,

[94] W.G. Unruh, Phys. Rev. A 51, 992 (1995)
[95] R. L. Walsworth et. al., Phys. Rev. Lett. 6 4 , 2599 (1990)
[96] W. Warren, Science 277, 1688-1690 (1997)
[97] S. Weinberg, Phys. Rev. Lett. 62, 485 (1989)
[98] S. Weinberg, Ann. of Phys. 194, pg. 336 (1989)
[99] S. Wiesner, quant-ph/9603028
[loo] W. K. Wootters and W. H. Zurek, Nature 299 (1982) pp. 802
[loll A. Yao, in Proceedings of the 36th Annual Symposium on Foun-

dations of Computer Science, edited by S. Goldwasser (IEEE
computer Society, Los Alamos, CA, 1995), p. 352

[lo21 C. Zalka, Proc. R. SOC. Lond. A 454 (1998) pp. 313-322

(1988)

view Letters, 75, pp. 3788-3791 (1995).

544-546 (1936)

[lo31 C. Zalka, quant-~h/9901068

